ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Катушка индуктивности, дроссель — электронный компонент. Предназначение, зачем нужен, где используется.

Катушка индуктивности (inductor. -eng)– устройство, основным компонентом которого является проводник скрученный в кольца или обвивающий сердечник. При прохождении тока, вокруг скрученного проводника (катушки), образуется магнитное поле (она может концентрировать переменное магнитное поле), что и используется в радио- и электро- технике.

К точной и компьютерной технике технике больше близок дроссель (Drossel, регулятор, ограничитель), так как он чаще всего применяется в цепях питания процессоров, видеокарт, материнских плат, блоков питания & etc. В последнее время, применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки.

Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока. Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало. Характеристики дросселя получаются от толщины проводника, количества витков, сопротивления проводника, наличия или отсутствия сердечника и материала, из которого сердечник сделан. Особенно эффективными считаются дроссели с ферритовыми сердечниками (а также из альсифера, карбонильного железа, магнетита) с большой магнитной проницаемостью.

Используется в выпрямителях, сетевых фильтрах, радиотехнике, питающих фазах высокоточной аппаратуры и другой технике требующей стабильного и «правильного» питания.

Многослойная катушка может выступать и в качестве простейшего конденсатора, так как имеет собственную ёмкость. Правда, от данного эффекта пытаются больше избавиться, чем его усиливать и он считается паразитным.

Что такое дроссель в электрике: устройство, назначение, проверка

Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.

Содержание статьи

Что такое дроссель, внешний вид и устройство

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор.

Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала —  металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником  и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель —  это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

    Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания —  сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения —  признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

Что такое дроссель и для чего он нужен, объясняю просто и доступно | Энергофиксик

Здравствуйте уважаемые посетители моего канала! В этой статье я хочу поговорить с вами о таком важном и многими до конца не понятым элементом как дроссель. И постараюсь буквально на пальцах объяснить, как же этот загадочный радиоэлемент функционирует.

yandex.ru

yandex.ru

Что такое дроссель

Итак, по факту дроссель - это не что иное, как самая обычная медная катушка в большинстве случаев намотанная на ферритовый либо же металлический сердечник. Но так же дроссель может быть и вообще без сердечника.

yandex.ru

yandex.ru

Как он работает

Итак, мы имеем дроссель (катушку из меди намотанную на сердечник). Если мы начнем пропускать через него ток, то он начинает формировать электромагнитное поле вокруг катушки. При этом для формирования поля нужна энергия и получается, что в первый момент протекания тока он тратится на формирование этого магнитного поля.

То есть, грубо говоря, в первый момент времени протекания тока дроссель приостанавливает протекание тока по нему. Как только электромагнитное поле полностью сформировано дроссель уже не препятствует протеканию тока и он продолжает движение дальше.

yandex.ru

yandex.ru

Если увеличить напряжение на дросселе, то сила тока так же увеличивается, а дроссель увеличивает свое магнитное поле. Уже на выходе из дросселя рост напряжения будет происходить с запаздыванием, так как часть энергии была потрачена на формирование электромагнитного поля.

А теперь давайте представим, что рост напряжения имел импульсный характер. Дроссель его (импульс) полностью поглотит и на выходе будет стабильное напряжение без всяких скачков.

Данный эффект активно используется, например, в сетевых фильтрах, которые благодаря установленным дросселям успешно отфильтровывают импульсные помехи напряжения.

yandex.ru

yandex.ru

Каждый существующий дроссель характеризуется такой величиной как индуктивность (физическая величина, характеризующая магнитные свойства электрической цепи).

При этом верно утверждение: чем больше индуктивность проводника, тем большим будет сформированное магнитное поле при идентичном значении протекающего электрического тока.

Индуктивность измеряется в "H" – Генри и чем большей индуктивностью обладает дроссель, тем больше энергии нужно потратить чтобы полностью сформировать электромагнитное поле вокруг него.

Чем больше витков в катушке, тем большей индуктивностью она будет обладать, а при помещении в катушку сердечника индуктивность увеличивается многократно.

yandex.ru

yandex.ru

Кстати, если индуктивность дросселя будет достаточна большой, а частота тока высокой, то он (дроссель) просто напросто полностью заблокирует протекание переменного электрического тока, так как просто не будет успевать насыщаться до переполюсовки питания.

Дроссель в понижающих DC-DC преобразователях

Эффект накопления электромагнитного поля в дросселе активно используется в понижающих DC-DC преобразователях, в которых используется еще одно крайне любопытное свойство дросселя, а именно:

yandex.ru

yandex.ru

Итак, наш дроссель накопил электромагнитное поле, вот только хранить его он ну никак не умеет и отдает его именно в виде электричества (а не тепла).

Это происходит следующим образом: дроссель буквально бомбардируется короткими импульсами, которые сформированы транзистором из линии питания.

yandex.ru

yandex.ru

Давайте проследим путь одного импульса: Происходит импульс величиной в 12 Вольт, но настолько короткий, что дроссель не успевает насытиться полностью (поле не до конца сформировано).

После подачи импульса электрическая цепь трансформируется и уже дроссель выполняет роль источника питания.

yandex.ru

yandex.ru

Но так как насыщение произошло не полностью, он отдает напряжение уже не 12 Вольт, а более низкое, например, 5 Вольт.

При этом, регулируя продолжительность импульса, мы тем самым контролируем (увеличиваем или же уменьшаем) напряжение, которое приходит на нагрузку.

При этом таких импульсов может быть до нескольких тысяч и даже более в одну секунду. А для того, чтобы сгладить пульсацию, в схему добавляется конденсатор.

yandex.ru

yandex.ru

Дроссель в повышающих DC-DC

А теперь давайте поговорим о самом интересном свойстве дросселя. Как вы, наверное, уже поняли дроссель никак не может сохранить накопленную энергию и отдает ее сразу. А как вы думаете, что произойдет, если полностью насыщенный дроссель мгновенно отключить от цепи?

yandex.ru

yandex.ru

А произойдет то, что дроссель будет настолько стремиться отдать свой заряд, что на его выводах будет существенно расти напряжение до таких величин, пока не произойдет пробой воздушной прослойки между выводами дросселя.

Именно это уникальное свойство используется в повышающих преобразователях.

Работает это следующим образом: пока цепь с дросселем замкнута, ток преспокойно протекает по замкнутой цепи.

yandex.ru

yandex.ru

Но если в цепи установить размыкатель (обычно это транзистор), то в момент размыкания цепи в дросселе импульсно возрастет напряжение и если постоянно выполнять размыкание и замыкание, то можно будет снимать импульсное высокое напряжение.

Не забываем, что из цепи никуда не делся источник питания и получается, что в таком случае напряжение источника питания и дросселя суммируется.

Заключение

Вот такими удивительными свойствами обладает, казалось бы, самый обыкновенный дроссель. Если вам понравилась статья, тогда обязательно оцениваем его лайком и репостом, так же милости просим в комментарии. Спасибо за внимание!

Дроссель – как работает и для чего нужен | Лампа Эксперт

Дроссель – достаточно уникальный электрический прибор, обладающий специфическими свойствами. Именно благодаря этим свойствам дроссели очень широко используются в электрике и электронике? Чем же так уникален электрический дроссель и где конкретно используется? Ответы на эти вопросы в этой статье.

Конструкция и принцип работы

Конструктивно дроссель представляет катушку, выполненную обычно медным проводом. Катушка в зависимости от назначения прибора может иметь то или иное количество витков и иметь сердечник (каркас, магнитопровод), изготовленный из магнитного материала.

Бескаркасный дроссель (слева вверху) и дроссели с сердечниками

Бескаркасный дроссель (слева вверху) и дроссели с сердечниками

Основной характеристикой дросселя, как и любой другой катушки индуктивности, является индуктивность, измеряемая в Генри (Гн). Чем она выше, тем больше энергии может запасти прибор. Индуктивность в свою очередь зависит от количества витков в катушке и материала магнитопровода (если он есть).

Постоянный ток

А теперь посмотрим, чем так интересен дроссель. Подадим на него постоянное напряжение. Вокруг катушки тотчас начинает формироваться  магнитное поле. В это время ток через дроссель практически не течет – вся энергия расходуется на создание этого самого поля.

 

Формирование магнитного поля вокруг катушки дросселя

Формирование магнитного поля вокруг катушки дросселя

Как только магнитное поле будет полностью сформировано – его величина и время создания зависит от индуктивности катушки и значения приложенного напряжения, - через дроссель начнет течь ток как через обычный проводник. Величина же тока будет зависеть от активного сопротивления катушки и напряжения на ней. Ток можно рассчитать по закону Ома для участка цепи  - I = U/R.

Переменный ток

С постоянным током вроде все просто. Подадим теперь на катушку переменный ток.

 

Дроссель в цепи переменного тока

Дроссель в цепи переменного тока

В начале первого полупериода в дросселе будут проходить те же процессы, что и в случае с постоянным напряжением. Вокруг катушки начнет формироваться магнитное поле, тока через дроссель нет. Как только поле будет сформировано, через устройство потечет ток. Течь он будет до тех пор, пока не закончится полупериод.

В начале второго полупериода, который будет приложен с противоположным знаком, снова начнется формирование магнитного поля, но уже с противоположным знаком (полюсом). Но Прежде, чем сформировать такое поле, необходимо избавиться от предыдущего! Поэтому во время второго полупериода сначала «убивается» предыдущее поле, а потом формируется новое, с другим знаком. Этот процесс называется перемагничиванием.

Таким образом, для создания магнитного поля  при переменном токе требует больше времени и больше энергии – ведь на перемагничивание ее нужно немало. Но перемагничивание окончено, поле сформировано и через дроссель начинает течь ток. При следующем полупериоде процесс повторится – снова перемагничивание с отсутствием тока и последующее возобновление его. Величина тока, в отличие от постоянного напряжения в этом случае будет зависеть от индуктивности и частоты. Чем выше частота, и больше индуктивность, тем меньше ток.

Важно! Рассчитать такой ток по закону Ома уже не удастся, поскольку сопротивление дросселя переменному току является реактивным, которое, как было сказано выше, зависит от индуктивности дросселя и частоты приложенного напряжения.

Самоиндукция

Кроме того, что дроссель обладает реактивным сопротивлением переменному току, он имеет еще одно очень интересное свойство. Взглянем на схему ниже.

Схема для опыта с самоиндукцией

Схема для опыта с самоиндукцией

Лампа и дроссель, соединены параллельно и подключены к источнику постоянного тока.  При замыкании ключа через дроссель и лампу течет постоянный ток. Лампа светится, вокруг катушки дросселя сформировано магнитное поле. Теперь мы размыкаем ключ и смотрим, что происходит.

От лампы и дросселя отключается напряжение, но вокруг катушки последнего сформировано магнитное поле. После снятия напряжения это поле начинает преобразовываться в электрическую энергию и ток через лампу продолжает течь! Течет он, правда, в другом направлении. Чем больше индуктивность и, соответственно, поле, тем дольше дроссель сможет питать лампу. Такое обратное преобразование энергии называется индукцией.

 

Теперь лампа питается напряжением самоиндукции дросселя

Теперь лампа питается напряжением самоиндукции дросселя

Важно! Напряжение самоиндукции может в разы превышать напряжение, которым дроссель питался. При достаточно большой индуктивности напряжение, созданное самоиндукцией, может даже сжечь лампу!

Подведем итоги

Итак, мы выяснили, что постоянный ток дроссель пропускает почти без потерь, поскольку, как правило, активное сопротивление обмотки мало. Для переменного тока дроссель является весьма ощутимым сопротивлением, которое зависит от индуктивности прибора и частоты напряжения. Здесь стоит заметить, что реактивное сопротивление приборов этого типа на порядки выше, чем активное.

Ну и при резком размыкании на выводах обмотки дросселя за счет рассеивания магнитного поля создается напряжение. Причем величина этого напряжения может в разы превышать напряжение, которым ранее питался дроссель.

Практическое применение

А теперь самое интересное. Где можно использовать все эти интересные и уникальные свойства дросселя? Вы будете удивлены, но сфера применения этих свойств очень широка. Рассмотрим основные из них.

Фильтр помех и сглаживающий фильтр

Если сделать индуктивность дросселя достаточно небольшой, то реактивное сопротивление на частоте 50 Гц (частота сети) будет невелико, а значит, сетевое напряжение такой прибор будет пропускать практически без потерь. Включим его последовательно с нагрузкой, и она (нагрузка) получит полноценное питание. Но если в сети появится импульсная помеха, то она будет практически вся израсходована на формирование магнитного поля и дальше не прорвется.

Таким образом, дроссель может быть использован (и широко используется) для подавления импульсных помех по питанию 220 В 50 Гц. Подобные фильтры встраиваются как в аппаратуру, так и устройства, подающие на них питание.

Сетевой фильтр персонального компьютера помечен стрелкой

Сетевой фильтр персонального компьютера помечен стрелкой

Важно! Дроссель может использоваться и для уменьшения импульсной составляющей выпрямленного напряжения в импульсных блоках питания. Принцип сглаживания импульсов – тот же.
Сглаживающий фильтр в цепях выходного напряжения блока питания компьютера

Сглаживающий фильтр в цепях выходного напряжения блока питания компьютера

Фильтр НЧ

Практически каждый из нас видел акустические системы (колонки), состоящие из нескольких громкоговорителей. В такой системе каждый динамик отвечает за свой частотный диапазон. Если это головка низкой частоты (НЧ), то на нее нужно подавать только низкочастотную составляющую звука. В противном случае возникнут искажения – частотные, фазовые, нелинейные и т.д.

Дроссель – идеальный фильтр НЧ. Если правильно подобрать его индуктивность, то он пропустит нужные нам низкие звуковые частоты и задержит верхние – ведь при увеличении частоты реактивное сопротивление его увеличивается. Взглянем на схему трехполосной акустической системы.

Электрическая схема трехполосной акустической системы

Электрическая схема трехполосной акустической системы

Громкоговоритель VA2, отвечающий за низкие частоты, включен через дроссель L1. Дроссель отсекает высокие частоты и пропускает на громкоговоритель только тот сигнал, для воспроизведения которого он предназначен. В качестве примера на фото ниже показан фильтр низкочастотной  АС.

Низкочастотный фильтр сабвуфера

Низкочастотный фильтр сабвуфера

Балласт

Знакомые всем трубчатые люминесцентные лампы тоже не обходятся без дросселя. Если их напрямую включить в сеть, то они мгновенно сгорят. Чтобы этого не произошло, необходимо ограничивать ток через колбу. Можно, конечно для этого использовать обычный резистор, который ограничит ток своим активным сопротивлением. Но, во-первых, мощность, а значит, и габариты такого резистора будут весьма внушительными.

Во-вторых, на резисторе будет рассеиваться очень большая мощность, примерно равная мощности самой лампы, а это неоправданный расход энергии и вся экономия от использования люминесцентной лампы исчезает. Ну и, в-третьих, вся расходуемая энергия превращается в тепло и светильник перестает быть пожаробезопасным.

И тут на выручку приходит дроссель. Подбирая индуктивность катушки, можно добиться нужного реактивного сопротивления в зависимости от запросов лампы.

В качестве ограничителя тока в люминесцентном светильнике используется дроссель

В качестве ограничителя тока в люминесцентном светильнике используется дроссель

А энергия в катушке, как мы выяснили, расходуется на создание магнитного поля. Для этого не требуется много энергии. В результате дроссель потребляет совсем немного и практически не нагревается. В результате восстанавливается пожаробезопасность и увеличивается КПД светильника.

Важно! В настоящее время вместо электромагнитных пускорегулирующих устройств – дросселей – используются их электронные аналоги – Электронные пускорегулирующие устройства. Они более сложны в схемотехнике, дороже своих электромагнитных собратьев, но имеют более высокий КПД и существенно уменьшают пульсации светового потока.
В этой компактной люминесцентной лампе (КЛЛ) используется электронный дроссель

В этой компактной люминесцентной лампе (КЛЛ) используется электронный дроссель

Преобразователи напряжения

Нередко возникает необходимость преобразовать постоянное напряжение одной величины в напряжение другой. Трансформаторы, естественно, для этих целей не подойдут – они работают только с переменным напряжением. Но, оказывается, для этих целей можно использовать дроссели. Точнее, одно из их свойств – самоиндукцию. Преобразователи бывают понижающие и повышающие. Рассмотрим работу каждого из них.

Взглянем на структурную упрощенную схему, изображенную на рисунке ниже.

Структурная схема понижающего преобразователя

Структурная схема понижающего преобразователя

При замыкании ключа S1 начинается создание магнитного поля вокруг катушки дросселя L1. Диод VD1 при этом заперт. Размыкаем ключ – магнитная энергия, запасенная в дросселе, путем самоиндукции преобразуется обратно в электрическую и через открывшийся диод поступает в нагрузку, попутно проходя через сглаживающий фильтр, собранный на конденсаторе С1.

Регулируя время открытия ключа, можно контролировать степень намагничивания дросселя. Чем короче импульс, тем меньше энергии он запасет, а значит, и отдаст в нагрузку. Таким образом, даже при высоком входном напряжении можно получить выходное практически любой величины.

При помощи дросселя можно не только понижать, но и повышать напряжение. Как мы заметили выше, напряжение самоиндукции в момент размыкания ключа может превышать величину напряжения, поданного на катушку.

Структурная схема повышающего преобразователя

Структурная схема повышающего преобразователя

Здесь дроссель включен последовательно с источником питания. При замыкании ключа S1 начинается «зарядка» катушки. В это время диод VD1 заперт и не дает разрядиться накопительному конденсатору С1. Как только мы разомкнем ключ, магнитное поле начнет превращаться в электрический ток. При этом напряжение самоиндукции сложится с питающим и на накопительном конденсаторе появится напряжение, превышающее входное (диод при этом откроется).

Как мы отмечали раньше, напряжение самоиндукции может превышать питающее, поэтому на выходе преобразователя мы можем получить напряжение, величина которого многократно, а не вдвое превышает входное. Это наглядно иллюстрирует схема, приведенная ниже.

Принципиальная схема повышающего преобразователя с 1.2 В до 80 В

Принципиальная схема повышающего преобразователя с 1.2 В до 80 В

Важно! Конечно, за такое удовольствие придется платить – ток потребления от первичного источника будет выше выходного ровно во столько раз, во сколько напряжение выходного выше входного.

Ну вот, вроде, и все об этом интересном приборе. Теперь мы знаем, как работает дроссель и где его уникальные свойства можно применить.

Для чего нужны дроссели и их цветовая маркировка

В электрических схемах среди других деталей используются катушки, намотанные изолированным проводом. В этой статье рассказывается, что такое дроссель, или катушка индуктивности, а также, как работает дроссель.

Интересно. Так называют также заслонку карбюратора автомобиля, но к электрическому дросселю она не имеет отношения.

Дросселя

Принцип действия

Катушка индуктивности обладает сопротивлением переменному току, причем, чем выше частота тока, тем выше сопротивление.

Ток, текущий через обмотку, вследствие законов Ленца и электромагнитной самоиндукции, не может измениться мгновенно. Это основной принцип работы дросселя. Чем выше скорость изменения тока, тем выше ЭДС, наводимая в катушке. При разрыве цепи с мгновенным исчезновением тока, идущего через обмотку, ЭДС стремиться к бесконечности. На практике напряжение на разрыве цепи или концах катушки достигает нескольких киловольт, что может привести к пробою изоляции или выгоранию контактов.

На этом принципе основана работа автомобильного зажигания.

Ток и напряжение

Изменение величины переменного напряжения на экране осциллографа выглядит как синусоида. Если оно не строго синусоидальной формы, то его можно разложить на сумму синусоидальных колебаний различной частоты. При росте напряжения происходит индуцирование тока в обмотке, поэтому он отстаёт от напряжения. Во второй фазе при уменьшении напряжения он также уменьшается с опозданием. Это связано с наличием магнитного поля, согласно закону самоиндукции, противодействующему изменениям тока, текущего через обмотку. Отставание тока от напряжения можно увидеть на экране двулучевого осциллографа. Таким образом, индуктивность оказывает сопротивление переменному току, причём тем выше, чем выше его частота.

Ток отстаёт от напряжения

В отличие от обычного резистора, имеющего активное сопротивление и выделяющего при работе тепло, катушка индуктивности имеет индуктивное сопротивление. Избыточная энергия превращается в ЭДС самоиндукции, направленной встречно приложенному напряжению.

Для увеличения магнитного потока и индуктивности обмотки её наматывают на сердечнике разной формы из различных материалов.

Устройство катушки индуктивности

Дроссель – это катушка, имеющая некоторое количество витков из изолированного провода. Изоляция необходима, чтобы ток шёл по всему проводу последовательно, создавая при этом магнитное поле.

Обмотка может быть намотана на магнитопроводе или без него. Это зависит от назначения устройства. Его форма может быть квадратной, Ш-образной или тороидальной. Материал зависит от частоты напряжения. Работающее устройство иногда издаёт гул с частотой напряжения питания.

На электронных платах такие элементы имеют корпус SMD. Так же устроен элемент R68.

Низкочастотные устройства

Обмотки этих приборов наматываются на сердечник, собранный из пластин, изготовленных из трансформаторной стали. Пластины покрываются лаком для изоляции друг от друга. Переменное магнитное поле наводит ЭДС в магнитопроводе, из-за чего потери на нагрев становятся неоправданно большими. Для того чтобы их уменьшить, голые пластины, а также сердечник из цельного металла не используются.

Внешне такое устройство похоже на трансформатор. Обмотка может быть намотана совсем без сердечника. Такие приборы используются для ограничения тока короткого замыкания.

Высокочастотные элементы

Катушки, предназначенные для работы в сетях высокой частоты, мотаются на стальные ферритовые сердечники, а также совсем без них.

Намотка встречаются однослойная и многослойная, одно,- и многосекционная. Внешне могут быть похожи на трансформатор, резистор или конденсатор с соответствующей маркировкой. Например, так выглядит элемент R68.

Применение катушки индуктивности

Так для чего нужен электрический дроссель? Зачем он применяется? Используются такие устройства в самых разных местах.

Токоограничивающие приборы

В катушках индуктивности избыточная энергия превращается в ЭДС. Поэтому, в отличие от обычных резисторов, они меньше по размеру и не требуют охлаждения. Их используют:

  • Для ограничения тока короткого замыкания – наматываются без сердечника. Их индуктивное сопротивление невелико, однако при КЗ каждая десятая часть Ома имеет значение для увеличения токоограничивающего эффекта;
  • Для запуска электродвигателей большой мощности, где подключаются на время пуска. После запуска закорачиваются специальным пускателем;
  • В лампах ДРЛ, ДНаТ (дуговых натриевых трубчатых) и пусковой аппаратуре люминесцентных ламп. Дроссель днат должен соответствовать по мощности лампе. Вместо дросселя в лампе ДРЛ 250 или ДРЛ 400 может использоваться встроенное сопротивление.

Дросселя для люминесцентных ламп

Интересно. Сейчас вместо старой пусковой аппаратуры люминесцентные лампы включаются через электронный дроссель. Вместо него можно использовать электронный дроссель от сгоревшей энергосберегающей лампы такой же или большей мощности.

Катушки насыщения

При росте тока, протекающего через обмотки, магнитопровод насыщается магнитным полем, и свыше определённой величины сопротивление не растёт. Раньше использовались в стабилизаторах напряжения. Сейчас в этом нет необходимости – используются электронные схемы.

Сглаживающие фильтры

Предназначены для устранения пульсаций выпрямленного переменного напряжения. Использовались в транзисторных блоках питания и сварочных трансформаторах. Сегодня вместо катушки блоки питания используют электронные схемы. Их называют «электронный дроссель». Используется электронный дроссель аналогично обычному.

«Бочонок» на USB-кабеле – это тоже катушка с ферритовым сердечником и одним витком обмотки.

В электронных схемах для этих целей используются малогабаритные элементы, например, R68.

Магнитные усилители (МУ)

До появления тиристорных систем управления электродвигателями использовались магнитные усилители – МУ. В них сердечник из трансформаторной стали намагничивался постоянным током дополнительной обмоткой. Таких обмоток могло быть несколько. Это приводило к насыщению железа магнитным полем, изменению индуктивного сопротивления и тока в основной обмотке.

После появления тиристоров такие устройства вышли из применения.

Магнитный усилитель

Резонансный контур

При включении катушки индуктивности параллельно с конденсатором получившаяся цепь будет иметь минимальное сопротивление на определённой частоте. Такие схемы используются в радиоприёмниках.

Элементы электронных схем и компьютерных плат

На платах катушки индуктивности, такие, как R68, используются для выделения сигналов определённой частоты, защите от помех и отделении частей схемы друг от друга.

Маркировка малогабаритных устройств

На деталях небольшого размера, используемых в электронной технике, недостаточно места для нанесения надписей, указывающих номинальные характеристики устройства. Поэтому используется специальная цветовая маркировка дросселей. По этой кодировке при помощи онлайн-калькуляторов можно узнать параметры элемента.

Цветовая кодировка состоит из 3 или 4 колец, нанесённых на корпус. По первым двум кольцам видна индуктивность элемента в миллигенри, следующее – показывает множитель, на который необходимо умножить первое число, а четвёртое – допустимое отклонение реальной индуктивности от номинала. Если колец всего три, то отклонение составляет 20%. Первое кольцо обычно шире остальных.

Цветовая маркировка дросселей

Например, на корпусе следующие полосы:

  1. коричневый – 1;
  2. жёлтый – 4;
  3. оранжевый – 1mH;
  4. серебряный – допуск 10%.

Таким образом, номинал этого элемента составляет 14 mH с допуском 10%.

Катушка индуктивности как электрический прибор и принцип её действия известны много десятков лет. Но без устройств разных типов и номиналов, использующихся в самых разных местах, невозможно существование ни электротехники, ни электроники, в том числе компьютерной техники.

Видео

Оцените статью:

Принцип работы дросселя

Катушка индуктивности, дроссель - принцип работы

Катушка индуктивности – устройство, основным компонентом которого является проводник скрученный в кольца или обвивающий сердечник.

При прохождении тока, вокруг скрученного проводника (катушки), образуется магнитное поле (она может концентрировать переменное магнитное поле), что и используется в радио- и электротехнике.

К точной и компьютерной технике технике больше близок дроссель (Drossel, регулятор, ограничитель), так как он чаще всего применяется в цепях питания процессоров, видеокарт, материнских плат, блоков питания.

В последнее время применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки.

Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока. Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало. Характеристики дросселя получаются от толщины проводника, количества витков, сопротивления проводника, наличия или отсутствия сердечника и материала, из которого сердечник сделан. Особенно эффективными считаются дроссели с ферритовыми сердечниками (а также из альсифера, карбонильного железа, магнетита) с большой магнитной проницаемостью.

Используется в выпрямителях, сетевых фильтрах, радиотехнике, питающих фазах высокоточной аппаратуры и другой технике требующей стабильного и «правильного» питания. Многослойная катушка может выступать и в качестве простейшего конденсатора, так как имеет собственную ёмкость. Правда, от данного эффекта пытаются больше избавиться, чем его усиливать и он считается паразитным.

Как работает дроссель

В цепях переменного тока, для ограничения тока нагрузки, очень часто применяют дроссели - индуктивные сопротивления. Перед обычными резисторами здесь у дросселей имеется серьезные преимущества - значительная экономия электроэнергии и отсутствие сильного нагрева.

Устройство дросселя

Устроен дроссель очень просто - это катушка из электрического провода, намотанная на сердечнике из ферромагнитного материала. Приставка ферро, говорит о присутствии железа в его составе (феррум - латинское название железа), в том или ином количестве.

Принцип работы дросселя основан на свойстве, присущем не только катушкам но и вообще, любым проводникам - индуктивности.

Это явление легче всего понять, поставив несложный опыт.

Для этого требуется собрать простейшую электрическую цепь, состоящую из низковольтного источника постоянного тока (батарейки), маленькой лампочки накаливания, на соответствующее напряжение и достаточно мощного дросселя (можно взять дроссель от лампы ДРЛ-400 ватт).

Без дросселя схема будет работать как обычно - цепь замыкается, лампа загорается. Но если добавить дроссель, подключив его последовательно нагрузке(лампочке), картина несколько изменится.

Присмотревшись, можно заметить, что, во-первых, лампа загорается не сразу, а с некоторой задержкой, во-вторых - при размыкании цепи возникает хорошо заметная искра, прежде не наблюдавшаяся. Так происходит, потому что в момент включения ток в цепи возрастает не сразу - этому препятствует дроссель, некоторое время поглощая электроэнергию и запасая ее в виде электромагнитного поля. Эту способность и называют - индуктивностью.

Чем больше величина индуктивности, тем большее количество энергии может запасти дроссель. Еденица величины индуктивности - 1 Генри В момент разрыва цепи запасеная энергия освобождается, причем напряжение при этом может превысить Э.Д.С. используемого источника в десятки раз, а ток направлен в противоположную сторону. Отсюда заметное искрение в месте разрыва. Это явление называется - Э.Д.С. самоиндукции.

Если установить источник переменного тока вместо постоянного, использовав например, понижающий трансформатор, можно обнаружить что та же лампочка, подключенная через дроссель - не горит вовсе. Дроссель оказывает переменному току гораздо большое сопротивление, нежели постояному. Это происходит из за того, что ток в полупериоде, отстает от напряжения.

Получается, что действующее напряжение на нагрузке падает во много раз(и ток соответственно), но энергия при этом не теряется - возвращается за счет самоиндукции обратно в цепь. Сопротивление оказываемое индуктивностью переменному току называется - реактивным. Его значение зависит от величины индуктивности и частоты переменного тока. Величина индуктивности в свою очередь, находится в зависимости от количества витков катушки и свойства материала сердечника, называемого - магнитной проницаемостью, а так же его формы.

Магнитная проницаемость - число, показывающее во сколько раз индуктивность катушки больше с сердечником из данного материала, нежели без него(в идеале - в вакууме.)Т. е - магнитная проницаемость вакуума принята за еденицу.

В радиочастотных катушках малой индуктивности, для точной подстройки применяются сердечники стержеобразной формы. Материалами для них могут являться ферриты с относительно небольшой магнитной проницаемостью, иногда немагнитные материалы с проницаемостью меньше 1.В электромагнитах реле - сердечники подковоообразной и цилиндрической формы из специальных сталей.

Для намотки дросселей и трансформаторов используют замкнутые сердечники - магнитопроводы Ш - образной и тороидальной формы. Материалом на частотах до 1000 гц служит специальная сталь, выше 1000 гц - различные ферросплавы. Магнитопроводы набираются из отдельных пластин, покрытых лаком.

У катушки, намотанной на сердечник, кроме реактивного(Xl) имеется и активное сопротивление(R). Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.

Как работает трансформатор

Рассмотрим работу дросселя, собранного на замкнутом магнитопроводе и подключенного в виде нагрузки, к источнику переменного тока. Число витков и магнитная проницаемость сердечника подобраны таким образом, что его реактивное сопротивление велико, ток протекающий в цепи соответственно - нет.

Ток, переодически изменяя свое направление, будет возбуждать в обмотке катушки (назовем ее катушка номер 1) электромагнитное поле, направление которого будет также переодически меняться - перемагничивая сердечник. Если на этот же сердечник поместить дополнительную катушку(назовем ее - номер 2), то под действием переменного электромагнитного поля сердечника, в ней возникнет наведенная переменная Э.Д.С.

Если количество витков обеих катушек совпадает, то значение наведенной Э.Д.С. очень близко к значению напряжения источника питания, поданного на катушку номер 1. Если уменьшить количество витков катушки номер 2 вдвое, то значение наведенной Э.Д.С. уменьшится вдвое, если количество витков наоборот, увеличить - наведенная Э.Д.С. также, возрастет. Получается, что на каждый виток, приходится какая-то определенная часть напряжения.

Обмотку катушки на которую подается напряжение питания (номер 1) называют первичной. а обмотка, с которой трансформированое напряжение снимается - вторичной .

Отношение числа витков вторичной(Np ) и первичной (Ns ) обмоток равно отношению соответствующих им напряжений - Up (напряжение первичной обмотки) и Us (напряжение вторичной обмотки).

Таким образом, устройство, состоящее из замкнутого магнитопровода и двух обмоток в цепи переменного тока, можно использовать для изменения питающего напряжения - трансформации. Соответственно, оно так и называется - трансформатор.

Для чего нужен дроссель

Виды дросселей

Дроссель используется вместо последовательного резистора, потому что обеспечивает лучшую фильтрацию (меньше остаточной пульсации переменного тока на источнике питания, что означает меньшее гудение на выходе усилителя) и меньшее падение напряжения. «Идеальный» индуктор будет иметь нулевое сопротивление постоянному току.

При использовании резистора большего размера, вы быстро достигаете точки, где падение напряжения возрастает до пиковых величин, и, кроме того, «провал» питания становится значительным, потому что разность токов между полной выходной мощностью и холостым ходом может быть немалой, особенно в усилителе класса AB.

Существует две распространенные конфигурации источника питания: конденсаторный вход и дроссельный вход.

Входной фильтр конденсатора не обязательно должен иметь дроссель, но для дополнительной фильтрации тот необходим. Источник питания дросселя по определению обязан оснащаться дросселем.

Источник питания с дросселем

На входе конденсатора будет конденсатор фильтра, следующий непосредственно за выпрямителем. Тогда он может иметь или не иметь второго фильтра, состоящего из последовательного резистора или дросселя, за которым следует другой конденсатор. Сеть «колпачок – индуктор – колпачок» обычно называется сетью «пи-фильтр». Преимущество входного фильтра конденсатора заключается в более высоком выходном напряжении, но он имеет более низкое регулирование напряжения, чем входной фильтр дросселя.

Источник питания дросселя будет иметь дроссель, следующий сразу за выпрямителем. Основное преимущество входного питания дросселя – лучшее регулирование напряжения, но за счет гораздо более низкого выходного напряжения. Входной фильтр дросселя должен иметь определенный минимальный ток, протекающий через него для поддержания регулирования.

Дроссель в собранном приборе

Пример:

Разница напряжений между двумя типами фильтров может быть довольно большой. Например, предположим, что у вас есть трансформатор 300-0-300 и двухполупериодный выпрямитель.

Если вы используете конденсаторный входной фильтр, вы получите максимальное напряжение постоянного тока без нагрузки в 424 вольт, которое снизится до напряжения, зависящего от тока нагрузки и сопротивления вторичных обмоток.

Если вы используете тот же трансформатор с входным фильтром дросселя, пиковое выходное напряжение постоянного тока будет составлять 270 В и будет гораздо более строго регулироваться, чем входной фильтр конденсатора (меньше перемен напряжения питания с изменениями тока нагрузки).

Как обозначается дроссель на схеме

Условные обозначения:

Условное графическое обозначение дросселей

Из чего состоит дроссель

Элементы:

  • катушка;
  • провод, намотанный на сердечник;
  • магнитопровод.

Есть схожесть с трансформатором, но слой обмотки всего один. Такая конструкция помогает стабилизировать сеть, а также исключить шанс резкого скачка напряжения.

Как подключить дроссель

Схема подключения очень простая и представляет собой цепь последовательно соединённого дросселя и самого устройства ДРЛ 250. Подключение идёт через сеть 220 вольт и работает при обычной частоте. Поэтому их без труда можно поставить в домашнюю сеть. Дроссель работает как стабилизатор и корректировщик напряжения.

Схема подключения дросселя

Как отличить резистор от дросселя

По внешнему виду: от резисторов отличаются обычно толщиной (дроссели толще), от конденсаторов – неправильной формой «капельки».

Более точный способ – сопротивление. У дросселя оно почти нулевое.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 3 чел.
Средний рейтинг: 5 из 5.

схема подключения, принцип работы, замена,

Дроссель (балласт) является обязательным атрибутом практически любого люминесцентного светильника. В этой статье мы рассмотрим, что это за прибор, как он работает и для чего вообще нужен дроссель в люминесцентных лампах.

Для чего нужна пускорегулирующая аппаратура

Прежде чем мы начнем разговор о дросселе, разберемся, что такое пускорегулирующая аппаратура и для чего она нужна. Для того чтобы ответить на эти вопросы, необходимо понять, как работает люминесцентная лампа (ЛДС). Взглянем на ее схематическое изображение.

Схема, поясняющая устройство ЛДС

Перед нами стеклянная колба в виде трубки, в концы которой впаяны две спирали из вольфрама – анод и катод. Сама трубка заполнена инертным газом с небольшим добавлением ртути. Если на анод и катод подать рабочее напряжение, то лампа не засветится – слишком велико сопротивление инертного газа, и тока между электродами не будет.

Для того чтобы прибор запустить, необходимо разогреть спирали. Как только они разогреются, начнется термоэлектронная эмиссия, такая же, как в обычной электронной вакуумной лампе для радиоприемников. Между электродами начнет течь ток, а пары ртути станут излучать ультрафиолет. Попадая на люминофор, ультрафиолет заставляет его ярко светиться. Само же УФ излучение практически полностью поглощается стеклом и люминофором.

Пуск ДЛС обеспечивает специальный прибор – стартер, который кратковременно подает на спирали напряжение (о схеме его включения поговорим позже). Он является пусковой частью пускорегулирующей аппаратуры.

Стартеры для запуска ДЛС

Заставить лампу работать (как говорят, «запустить») можно и другим способом, кратковременно подав на электроды повышенное напряжение.  Именно так и работают электронные пускорегулирующие аппараты, о которых поговорим позже.

Но после пуска ЛДС начинаются новые проблемы: тлеющий разряд в колбе переходит в дуговой и мгновенно приводит к короткому замыканию. Чтобы этого не произошло, ток через лампу во время ее работы необходимо ограничивать. Эту роль исполняет еще один прибор – электромагнитный балласт. Он является регулирующей частью пускорегулирующей аппаратуры.

ЭмПРА для ЛДС мощностью 36 Вт

Таким образом, без стартера лампа не запустится, без балласта – сгорит. Комплекс этих двух устройств и называют пускорегулирующим. Теперь, я думаю, тебе понятно, для чего пускорегулирующая аппаратура нужна, и что без нее никак не обойтись.

Важно! Мощность дросселя должна соответствовать мощности лампы. В противном случае лампа либо тут же погаснет, либо не запустится вовсе, либо сгорит.

к содержанию ↑

Схема подключения люминесцентной лампы

Теперь пора узнать, как подключить ЛДС к дросселю и стартеру.

Схема подключения одной люминесцентной лампы

Как это работает? При подаче на светильник напряжения практически все оно, протекая через дроссель, прикладывается к стартеру, поскольку тока через саму лампу нет. За счет тлеющего разряда биметаллическая пластина в стартере разогревается и замыкает цепь, подавая на спирали полное напряжение сети. Тлеющий разряд в стартере гаснет, биметаллическая пластина остывает и размыкает цепь, но к этому времени спирали лампы уже разогреты. За счет обратной самоиндукции дроссель формирует короткий высоковольтный (около 1 кВ) разряд и зажигает лампу.

Важно! Если старта не произошло, то процесс пуска повторяется. Ты наверняка видел старые ЛДС, которые часами «моргают», не могут зажечься.

Теперь напряжение на стартере недостаточно для начала в нем тлеющего разряда, и в дальнейшей работе светильника он не участвует. В работу включается балласт, который ограничивает ток через газоразрядный прибор на заданном уровне. Величина его зависит от мощности дросселя. Именно поэтому я упоминал выше, что мощность дросселя должна соответствовать мощности ЛДС. В противном случае ток будет слишком мал или слишком  велик.

Наглядная иллюстрация работы люминесцентного светильника со стартером и электромагнитным дросселем

Пару слов по поводу конденсатора, стоящего на входе схемы. Имея большую индуктивность, балласт потребляет не только активную, но и реактивную энергию, причем последняя расходуется впустую – на нагрев самого дросселя. Конденсатор, который называют компенсирующим, уменьшает расход реактивной энергии, увеличивая КПД конструкции и облегчая режим работы самого дросселя.

Можно ли подключить к одному дросселю две ЛДС? Тут все будет зависеть от рабочего напряжения самих ламп. Если они рассчитаны на напряжение 220 В, то придется собрать схему с двумя дросселями, точнее, собрать две схемы, которые я привел выше. Но если лампы рассчитаны на напряжение 110 В, то такое вполне возможно.

Схема подключения двух люминесцентных ламп к одному дросселю

Принцип работы этой схемы такой же, как и предыдущей, только каждый стартер отвечает за пуск своей ЛДС.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Собирая такую схему, нужно взять стартеры на 110 В и выбрать дроссель, мощность которого равна суммарной мощности ламп. Кроме того, мощность используемых ламп должна быть одинаковой. Именно такая схема используется в растровых светильниках, которые применяются в офисах. В них установлено 4 лампы по 18 Ватт. Лампы запитаны попарно, установлено 2 дросселя.

Нередко на дросселе отечественного производства можно увидеть аббревиатуру ЭмПРА. Именно так правильно называется электромагнитный дроссель – Электромагнитный Пускорегулирующий Аппарат.

к содержанию ↑

Зачем нужен дроссель в схеме

В принципе, зачем нужен дроссель для ламп, мы выяснили: чтобы ограничить через них ток на рабочем уровне. Как он включается, мы тоже знаем. Осталось узнать, как и за счет чего он ограничивает ток, поэтому пора поговорить об устройстве дросселя и принципе его работы.

Дросселем в радиотехнике называют обмотку, навитую на сердечник того или иного типа. Но такой дроссель при частоте 50 Гц имеет относительно низкую индуктивность. Чтобы повысить индуктивность дросселя для люминесцентных ламп без увеличения его габаритов, применяют разомкнутый магнитопровод, оставляя между секциями пластин небольшие зазоры.

Дроссель для ЛДС – та же катушка индуктивности, но с незамкнутым магнитопроводом

Почему дроссель оказывает сопротивление току? Проходя через катушку дросселя, переменный ток намагничивает сердечник, запасая в нем магнитную энергию. Причем при одной полуволне она запасается с одним знаком, при другой – с другим. Но чтобы запасти энергию с другим знаком, нужно сначала «уничтожить» предыдущий: перемагнитить сердечник, который, конечно, “сопротивляется” и не дает это сделать быстро. Именно за счет такого постоянного перемагничивания ток ограничивается.

Вполне очевидно, что дроссель будет выполнять свои функции только в цепи переменного тока.

к содержанию ↑

Преимущества и недостатки электромагнитного дросселя

Теперь поговорим о преимуществах и недостатках. К преимуществам электромагнитного дросселя можно отнести:

  1. Относительно невысокую стоимость.
  2. Простоту конструкции.
  3. Долговечность.

Недостатков у этого прибора, увы, немного больше. Это:

  1. Большие массогабаритные показатели.
  2. Мерцание лампы с удвоенной частотой питающей сети.
  3. Гудение.
  4. Низкий КПД из-за большого индуктивного сопротивления.
  5. При отрицательных напряжениях может не запустить лампу.
  6. Долгий запуск (от 1 до 3 сек.).
  7. При тяжелом пуске лампа может долго «моргать», из-за чего у нее перегорают спирали.
к содержанию ↑

Можно ли обойтись без него

Выше я писал, что дроссель – неотъемлемая часть пускорегулирующей аппаратуры, а значит, обойтись без него нельзя. Но дроссель дросселю рознь. Существуют приборы, которые ограничивают ток другим, электронным методом. Их называют ЭПРА – Электронный Пускорегулирующий Аппарат.

ЭПРА для люминесцентных ламп

Как видно из схемы, нанесенной на корпус прибора, этот может обслуживать сразу 4 ЛДС, причем для их пуска стартеры не потребуются. Оправдана ли замена ЭмПРА на ЭПРА? Безусловно, поскольку ЭПРА:

  1. Имеет небольшие массогабариты.
  2. Не гудит.
  3. Не вызывает мерцания лампы с частотой сети.
  4. Имеет высокий КПД (на 30-50% выше, чем у ЭмПРА).
  5. Запускает ЛДС практически мгновенно.

Электронный дроссель сложнее и дороже электромагнитного, но цена вполне компенсируется достоинствами.

к содержанию ↑

Типовые неисправности — замыкание, перегрев, обрыв

А теперь рассмотрим возможные неисправности электромагнитных дросселей и научимся их (дроссели) проверять. Самые распространенные неисправности ЭмПРА:

  1. Перегрев. Обычно вызывается неправильной эксплуатацией (светильник не имеет вентиляции или стоит в жарком помещении), напряжением сети выше нормального и производственным браком (межвитковое замыкание).
  2. Обрыв обмотки. Может быть вызван перегревом, механическим повреждением или просто производственным браком.
  3. Замыкание. Может быть как межвитковое, так и полное. Причины те же: брак, перегрев, механическое повреждение.

Как проверить электромагнитный дроссель

Сделать это несложно, причем никаких измерительных приборов не потребуется. Достаточно собрать простую схему прямо на коленках, подключив лампу накаливания параллельно стартеру и через дроссель запитанную от розетки:

Схема проверки дросселя

Важно! Мощность лампы для проверки должна примерно равняться мощности проверяемого дросселя (балласта).

Итак, собираем схему, включаем. В результате видим:

  1. Лампа не горит. В балласте обрыв.
  2. Горит на полную яркость. Замыкание.
  3. Моргает или горит вполнакала. Балласт, возможно, исправен.

Пусть теперь схема поработает хотя бы с полчаса. Если балласт нагрелся выше 70 градусов Цельсия, то, скорее всего, он имеет межвитковое замыкание. Такой прибор просто не запустит ЛДС, а если и запустит, то из него в скором времени пойдет дым.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Возможен еще один тип неисправности – пробой на корпус. Тут уже понадобится мультиметр, который поставлен в режим измерения максимально больших сопротивлений. Измеряем сопротивление между клеммами и корпусом дросселя, мультиметр должен показывать «бесконечность».

Вот и подошла к концу беседа об электромагнитных дросселях. Теперь ты знаешь, для чего они нужны, как устроены и даже сможешь самостоятельно проверить этот простой, но такой необходимый прибор.

Предыдущая

ЛюминесцентныеОсобенности энергосберегающих люминесцентных ламп

Следующая

ЛюминесцентныеСхема подключения и характеристики люминесцентных ламп на 18 Вт

Что такое дроссель и для чего он нужен?

Дело в том, что топливо в двигателе при первом запуске остается холодным, и для его нагрева требуется смесь топлива и воздуха, для чего и предназначена воздушная заслонка. Дроссель обычно расположен ближе к верхнему концу карбюратора и обеспечивает эту смесь, перекрывая подачу воздуха в карбюраторы. Когда это происходит, внутри карбюратора также создается низкое давление воздуха, чтобы больше топлива проходило через главный контур.Когда ваш автомобиль не работает, давление воздуха обычно снижается или отсутствует вовсе, что не улучшает прохождение топлива через автомобиль.

Когда вы используете воздушную заслонку для временного прекращения подачи воздуха, создается разряжение в коллекторе, а не в вакууме, что способствует увеличению подачи топлива по топливопроводам автомобиля. Когда дроссельная заслонка установлена ​​на самый верхний уровень, она притягивает топливо через канал холостого хода и в сочетании с уменьшенной подачей воздуха создает решение, необходимое для запуска холодного двигателя.Когда двигатель в конце концов запускается, ему требуется воздух, чтобы поддерживать его работу и в то же время поддерживать баланс топливной смеси. Вал дроссельной заслонки слегка наклонен в одну сторону, поэтому сила поступающего воздуха в конечном итоге подтолкнет ее к полному открытию.

Во многих старых транспортных средствах отливка карбюратора или поршень с вакуумным приводом используются для той же концепции, но они вызвали длинный список проблем, включая остановку и затрудненный запуск транспортных средств. В последние годы эти поршни были заменены дроссельными диафрагмами, в которых они лишь немного приоткрывают дроссельную заслонку при запуске двигателя.Существует ряд проблем, которые могут возникнуть из-за неисправной воздушной заслонки, включая грубый запуск и остановку вашего автомобиля.

Эти проблемы обычно возникают, когда корпус дросселя не нагревается. К этим проблемам добавляется скопление ржавчины в выпускном коллекторе, которое может вызвать засорение карбюратора. Когда это действительно происходит, пружина внутри карбюратора нагревается не так быстро, как предполагалось, чтобы вызвать медленное открывание воздушной заслонки. Карбюраторы, которые питаются от электрического нагревательного элемента, могут иметь ослабленный провод или заземление, что в конечном итоге препятствует открытию дроссельной заслонки.
Воздушную заслонку можно отрегулировать для изменения температуры, при которой открывается и закрывается, что приводит к обеднению стартовой топливной смеси. Вы можете отрегулировать воздушную заслонку, ослабив винты, удерживающие корпус и воздушную заслонку на месте, а затем повернув корпус. На многих новых моделях автомобилей вместо винтов используются заклепки, и их можно легко заменить после регулировки путем их высверливания.

Важно обращать внимание на скорость открытия и закрытия заслонки.Если он не открывается в положенное время, особенно в теплую погоду, это может привести к увеличению выбросов углекислого газа. И наоборот, если воздушная заслонка открывается слишком быстро в холодную погоду, это может привести к остановке двигателя или вообще не запускаться. Скорость срабатывания воздушной заслонки играет решающую роль при открытии и закрытии воздушной заслонки, особенно в теплую погоду. Чтобы улучшить дросселирование, некоторые новые карбюраторы оснащены двухдроссельной заслонкой, которая позволяет открывать и закрывать воздушную заслонку в зависимости от температуры.В заключение, воздушная заслонка является важным компонентом транспортного средства, и приведенные выше советы помогут вам использовать ее в своих интересах.

Как работает дроссель в мотоциклах

Наша миссия Venhill - помочь людям получить больше от своих мотоциклов, квадроциклов, автомобилей и картингов с помощью инновационных продуктов и увлеченных сотрудников.

Новичкам часто приходится сталкиваться с проблемой запуска велосипеда в холодных условиях.

Почему запуск мотоцикла холодным зимним утром может быть проблемой?

В то время как большинство новых мотоциклов имеют электронный впрыск топлива (EFI), который помогает запустить двигатель при более низких температурах, старые модели (и некоторые новые) часто не имеют такой роскоши. К счастью, эти карбюраторные двигатели могут бороться с низкими температурами с помощью дроссельной заслонки.

Но что такое дроссельная заслонка или трос и что о них нужно знать владельцам велосипедов?

Эта статья посвящена дроссельным клапанам и кабелям, помогая понять, какую пользу они приносят мотоциклам.

Что такое дроссельная заслонка?

Дроссельный клапан / трос предназначен для ограничения потока воздуха в карбюраторе двигателя. Это помогает обогатить топливно-воздушную смесь, улучшая возможность запуска двигателя в условиях низких температур.

Для велосипедов, оснащенных карбюратором, дроссельная заслонка / трос помогают обеспечить достаточное количество топлива для запуска двигателя при низких температурах и климатических условиях. Соотношение воздуха и топлива, необходимого для запуска двигателя, изменяется в зависимости от температуры из-за физических и термодинамических характеристик сгорания и плотности воздуха.

Холодный двигатель не испарит топливо так же хорошо, как в более теплых условиях, поэтому дроссельная заслонка помогает обогатить смесь (либо добавляя больше топлива, либо перекрывая поток воздуха), чтобы увеличить количество горючего пара, доступного для запуска двигателя. .

Проще говоря, воздушная заслонка позволяет двигателю использовать больше топлива.

На мотоцикле дроссельная заслонка, скорее всего, представляет собой тяговый рычаг, либо непосредственно прикрепленный к карбюратору, либо косвенно прикрепленный к карбюратору с помощью кабеля.Если вам нужна помощь в поиске кабеля подходящего типа для любой части вашего мотоцикла, не стесняйтесь обращаться к нам в Venhill. Наши кабели для мотоциклов соответствуют высочайшим стандартам и помогают как энтузиастам, так и профессионалам получить больше от своих велосипедов.

В каждой модели и марке мотоцикла воздушные клапаны и кабели используются немного по-своему. Некоторые мотоциклы используют воздушную заслонку, чтобы уменьшить поток воздуха для обогащения смеси, в то время как другие используют клапан обогащения, который увеличивает количество топлива (в отличие от уменьшения воздушного потока).Оба типа обеспечивают одно и то же, но могут быть настроены по-разному в зависимости от модели и производителя велосипеда.

Когда двигатель работает и нагревается естественным образом, дроссельная заслонка может быть закрыта, чтобы уменьшить потребление дополнительного топлива. Если оставить клапан открытым без необходимости, это приведет к снижению топливной экономичности.

Использование дроссельной заслонки на мотоцикле

Использование воздушной заслонки для запуска двигателя не представляет опасности. Когда холодно, может возникнуть необходимость наладить дела.

Использование без необходимости приведет только к увеличению расхода топлива, но не к повреждению автомобиля.

Каждый мотоцикл может реализовать систему дросселирования по-своему. Это повлияет на то, как владельцы мотоциклов будут обогащать карбюратор.

На определенном этапе гонщики поймут, как долго им нужно использовать дроссель, чтобы все заработало. Опять же, в зависимости от температуры, это тоже может меняться.

Также не существует фиксированной температуры, при которой рекомендуется начать использование дроссельной заслонки. Вместо этого владельцы мотоциклов должны просто знать о преимуществах использования воздушной заслонки.Если велосипед не заводится, это первое, что нужно попробовать.

Электронный впрыск топлива

Альтернативой карбюраторам (и что становится все более популярным в новых мотоциклах) является система электронного впрыска топлива.

EFI использует компьютеры и датчики для лучшего понимания внешних условий, помогая решить, какой должен быть оптимальный воздушный поток / топливная смесь. Это снижает плохие характеристики, но снижает чрезмерный расход топлива.

Системы

EFI могут быть просто приложением, которое «впрыскивает» топливо в воздушный поток, когда это необходимо, например.грамм. в холодных условиях.

Система EFI будет использовать блок управления двигателем (ЭБУ) для управления серией событий, чтобы обеспечить оптимальную производительность двигателя. Считывая и интерпретируя все доступные данные, которые собирают датчики, ЭБУ может гарантировать, что двигатель получает необходимое количество топлива и воздушного потока для запуска. Благодаря использованию технологий и передовых датчиков это может значительно упростить жизнь владельцу мотоцикла, причем все это автоматизировано в фоновом режиме. Однако, если возникают какие-либо проблемы, учитывая более широкое использование приложений, для их устранения часто может потребоваться проверка электроники.

В то время как некоторые могут предпочесть практический подход карбюраторов и ручное управление воздушной заслонкой, другие могут приветствовать более автоматизированный подход. Какими бы ни были ваши предпочтения, использование и популярность систем EFI растет, поэтому, вероятно, они будут продолжать расти в мире мотоциклов.

Узнать больше с Venhill

Независимо от того, являетесь ли вы традиционалистом и придерживаетесь карбюраторов или только что приобрели новый байк с EFI, наш ассортимент мотоциклетных кабелей и продуктов Venhill разработан, чтобы помочь вам получить от своего велосипеда больше.Мы отправляем нашу продукцию Дистрибьюторам по всему миру и спонсируем некоторые из лучших гоночных команд MX и Superbike в Великобритании.

От тросов дроссельной заслонки до руля и аксессуаров - мы стремимся предоставлять нашим клиентам только лучшие продукты.

Наш поиск запчастей - отличное место для начала, позволяя вам легко найти соответствующие кабели и шланги для вашего мотоцикла в соответствии с вашими уникальными обстоятельствами и предпочтениями.

Наша команда всегда готова помочь вам в правильном направлении и обеспечить вам комфорт во всем, что вам нужно.

Свяжитесь с нами сегодня.

Как проверить воздушную заслонку на карбюраторном двигателе

Дроссельная заслонка - это пластина в карбюраторе, которая открывается и закрывается, чтобы больше или меньше воздуха попадало в двигатель. Подобно дроссельной заслонке, дроссельная заслонка поворачивается из горизонтального положения в вертикальное, открывая проход и позволяя проходить большему количеству воздуха. Дроссельная заслонка расположена перед дроссельной заслонкой и регулирует общее количество воздуха, поступающего в двигатель.

Воздушная заслонка используется только при запуске холодного двигателя.При холодном пуске заслонка должна быть закрыта, чтобы ограничить количество поступающего воздуха. Это увеличивает количество топлива в цилиндре и помогает двигателю работать, пока он пытается прогреться. После прогрева двигателя пружина датчика температуры медленно открывает воздушную заслонку, позволяя двигателю полностью дышать.

Если у вас не получается завести машину утром, проверьте воздушную заслонку на двигателе. Он может не полностью закрываться при холодном запуске, в результате чего в цилиндр попадает слишком много воздуха, что, в свою очередь, препятствует правильной работе на холостом ходу.Если после прогрева автомобиля воздушная заслонка не открывается полностью, ограничение в воздухе может привести к снижению мощности.

Часть 1 из 1: Осмотрите воздушную заслонку

Необходимые материалы

Шаг 1. Дождитесь утра, чтобы проверить воздушную заслонку . Проверьте воздушную заслонку и посмотрите, закрыта ли она при холодном двигателе.

Шаг 2: Снимите воздушный фильтр . Найдите и снимите воздушный фильтр двигателя и корпус, чтобы получить доступ к карбюратору.

Для этого может потребоваться использование ручных инструментов, однако во многих случаях воздушный фильтр и корпус крепятся только барашковой гайкой, которую часто можно снять без использования каких-либо инструментов.

Этап 3. Проверьте воздушную заслонку . Дроссельная заслонка будет первой дроссельной заслонкой, которую вы увидите при снятии воздушного фильтра. Этот клапан должен быть закрыт, потому что двигатель холодный.

Шаг 4: Несколько раз нажмите на педаль газа . Несколько раз нажмите педаль газа, чтобы закрыть клапан.

Если в вашем автомобиле есть воздушная заслонка с ручным управлением, попросите кого-нибудь переместить рычаг вперед и назад, пока вы смотрите и видите, движется ли и закрывается ли воздушная заслонка.

Шаг 5: Попробуйте слегка сдвинуть клапан пальцами .Если клапан отказывается открываться или закрываться, то он может каким-то образом застрять в закрытом состоянии либо из-за накопления грязи, либо из-за неправильно работающего регулятора измерения температуры.

Шаг 6: Используйте очиститель карбюратора . Распылите средство для чистки карбюратора на воздушную заслонку, а затем протрите ее тряпкой, чтобы удалить грязь.

Очиститель может безопасно входить в двигатель, поэтому не беспокойтесь о том, чтобы вытереть все до последней капли.

После того, как вы закроете воздушную заслонку, установите воздушный фильтр и корпус на карбюратор.

Шаг 7: Дайте двигателю поработать, пока он не прогреется. . Включите зажигание вашей машины. Когда двигатель прогреется, вы можете снять воздушный фильтр и проверить, открыта или закрыта воздушная заслонка. В этот момент воздушная заслонка должна быть открыта, чтобы двигатель мог дышать полностью.

  • Предупреждение : Никогда не запускайте и не ускоряйте двигатель при снятом воздухоочистителе в случае обратного возгорания.

При осмотре воздушной заслонки у вас также есть возможность заглянуть внутрь карбюратора.Если он грязный, вы можете подумать о том, чтобы очистить весь узел, чтобы двигатель работал бесперебойно.

Если у вас возникли проблемы с определением причины неисправности двигателя, обратитесь к сертифицированному специалисту YourMechanic для осмотра вашего двигателя и определения причины проблемы.

Дроссель карбюратора

Когда двигатель холодный, для запуска требуется более богатая смесь воздуха и топлива. Для создания этого состояния используется дроссель.

Чок представляет собой пластину или лезвие, закрывающее основные стволы.Он ограничивает поток воздуха через карбюратор. Это означает, что во впускной коллектор поступает больше топлива и меньше воздуха.

По мере прогрева двигателя он может работать на более бедной смеси. Дроссельную заслонку необходимо открывать постепенно, чтобы в двигатель попало больше воздуха.

Карбюраторы

доступны с дроссельной заслонкой или без нее. Также есть несколько типов дросселей на выбор.

Как это работает?

Вручную - Ручная заслонка управляется рычагом сбоку карбюратора.Затем с помощью кабеля прикрепляется рычаг или ручка внутри транспортного средства. Для этого необходимо, чтобы человек в машине медленно открывал воздушную заслонку вручную.

Автоматически - в автоматическом дросселе используется металлическая пружина для открытия и закрытия дроссельной заслонки. Пружина намотана в корпусе и одним концом прикреплена к рычагу воздушной заслонки. По мере прогрева двигателя он нагревает металлическую пружину. По мере того как пружина нагревается, она расширяется, вращается и открывает дроссельную заслонку.

Автоматические дроссели могут быть 1 из 3-х типов:

  • Электрический дроссель - Электрический дроссель использует электричество для нагрева пружины и постепенного открытия дроссельной заслонки.
  • Раздельный дроссель - В разводном дросселе металлическая пружина расположена во впускном коллекторе. Пружина соединяется с карбюратором с помощью небольшого стержня. Пружина нагревается выхлопными газами, проходящими через переходной канал.
  • Дроссель с горячим воздухом - В установке с дросселем с горячим воздухом металлическая пружина расположена в собственном корпусе. Трубка соединяется с корпусом и подает воздух, нагретый выхлопом.

Как это влияет на производительность?

Если вы живете в теплом климате, вам может не понадобиться дроссель.Кроме того, в большинстве гоночных автомобилей используется карбюратор без дроссельной заслонки.

Если вам нужен дроссель, вы можете выбрать тот, который лучше всего соответствует вашим потребностям. Если вы хотите большего контроля, вы можете выбрать ручной дроссель. Установка и регулировка автоматической воздушной заслонки может быть сложной задачей. Но это удобнее, чем ручной дроссель.

Разводные дроссели и дроссели с горячим воздухом часто используются при замене карбюратора OEM-типа. Если двигатель уже настроен на работу одного из этих дросселей, его легко сохранить в таком состоянии.

Электрические дроссели популярны и работают очень хорошо.Они также просты в установке и обслуживании. Комплекты для переоборудования электрических дросселей доступны для многих областей применения.

ID ответа 4722 | Опубликовано 23.01.2017 13:14 | Обновлено 14.04.2021 08:07

Типы дросселей и способы их использования - ATV Helper

Возможно, вы слышали о дросселе раньше и заметили, что он есть в вашей машине. Но как работает дроссель? Что ж, я объясню это здесь, а также когда использовать дроссель и общие проблемы с дросселями квадроциклов.

Заслонка встречается только на карбюраторе карбюраторного двигателя. Если у вас двигатель с впрыском топлива, но вы все же замечаете то, что похоже на рычаг воздушной заслонки, на самом деле это быстрый холостой ход или опережение холостого хода. Он служит той же цели, но работает иначе, чем дроссель.

Еще одна вещь, которую многие путают с дросселем, называется обогатителем. Теоретически они работают так же, как «быстрый холостой ход», но чаще всего встречаются в карбюраторных двигателях. Я дам краткое объяснение каждого из них. Потому что дроссель, холостой ход и обогатитель используются в основном для одной и той же цели.

Как работает дроссель мотовездехода

Дроссель мотовездехода работает, блокируя попадание воздуха в карбюратор и смешивание с топливом. Когда воздушная заслонка включена, смесь воздуха и топлива, поступающая в двигатель, намного богаче (больше топлива, чем обычно), что помогает запускать и поддерживать работу двигателя в холодном состоянии. Как только двигатель прогреется, вы можете снова выключить воздушную заслонку.

Обратите внимание на диаграмму ниже, дроссельная заслонка позволяет воздуху проходить через карбюратор в максимальном количестве и смешиваться с топливом.На этом рисунке дроссель находится в выключенном положении. Так будет выглядеть прогретый двигатель.

Если вы запускаете двигатель в холодный день, вы можете использовать воздушную заслонку, чтобы помочь вам запустить и запустить двигатель на холостом ходу. Когда вы устанавливаете воздушную заслонку во включенное положение, воздушная заслонка закрывается, блокируя попадание большого количества воздуха и его смешивание с топливом.

Топливно-воздушная смесь будет очень богатой (содержать много топлива), что помогает запускать холодный двигатель и работать на холостом ходу. Вы не захотите оставлять воздушную заслонку включенной во время езды, потому что воздушная заслонка может заглохнуть, когда двигатель прогреется.

Опережение на холостом ходу

Опережение на холостом ходу в основном наблюдается на двигателях с впрыском топлива, но имеет ту же цель, что и воздушная заслонка. Вы бы использовали его для запуска холодного двигателя. Однако опережение холостого хода, по сути, просто подливает топливо в двигатель, а не ограничивает воздух, как это делает дроссель.

Это по-прежнему обеспечивает более высокое соотношение воздух / топливо и помогает запустить холодный двигатель.

Enricher

Enricher работает так же на холостом ходу, но находится внутри карбюратора.По сути, они добавляют топливо в топливно-воздушную смесь, помогая запускать холодные двигатели. Многие люди путают обогатитель с воздушной заслонкой, потому что он находится на карбюраторе и управляется рычагом или плунжером, как воздушная заслонка.

Как использовать воздушную заслонку для квадроциклов

Воздушную заслонку для квадроциклов лучше всего использовать для запуска холодного двигателя. Благодаря более высокому соотношению топлива и воздуха у двигателя остается больше газа для работы. Однако после прогрева двигателя дополнительное топливо не потребуется. Запрещается кататься на квадроцикле или увеличивать его обороты при включенной воздушной заслонке.Подождите, пока двигатель прогреется, выключите воздушную заслонку и можете ехать.

Существует четыре основных типа дросселей для квадроциклов. Стиль плунжера, тип рычага, тип ручки и тип переключателя. Я расскажу о каждом из них и о том, как вы должны их использовать. Вот изображение, чтобы показать вам различия.

Дроссель рычажного типа

Дроссель рычажного типа во время нормальной работы должен находиться в нижнем положении. Чтобы использовать воздушную заслонку для запуска холодного двигателя, поднимите рычаг, чтобы включить воздушную заслонку.Как только двигатель прогреется, верните рычаг в нижнее положение.

Дроссель с рукояткой

Дроссель с рукояткой обычно находится с левой стороны рулевой рейки, если у вас есть дроссель этого типа. Во время нормальной работы воздушная заслонка с ручкой будет сдвинута до упора влево.

Чтобы включить воздушную заслонку, сдвиньте рычаг рукоятки вправо. Как только двигатель прогреется, верните рычаг ручки назад до упора влево.

Дроссель плунжерного типа

Дроссель плунжерного типа обычно находится сбоку от машины или рядом с запорным топливным клапаном.Во время нормальной работы заслонка плунжерного типа будет полностью подавлена ​​(полностью внутрь).

Чтобы открыть воздушную заслонку и запустить холодный двигатель, потяните за заслонку плунжерного типа. Как только двигатель прогреется, нажмите на поршень, чтобы он полностью подавился.

Дроссельная заслонка переключаемого типа

Дроссельная заслонка переключаемого типа обычно находится сбоку от машины или рядом с отсечным топливным клапаном бензобаков. Во время нормальной работы дроссель переключаемого типа будет лежать ровно (как на картинке выше).

Чтобы открыть воздушную заслонку для запуска холодного двигателя, потяните переключатель вверх, чтобы он торчал прямо, на 90 градусов от исходного положения. После прогрева двигателя верните переключатель в исходное положение.

Общие проблемы с дросселями

Здесь я отвечу на некоторые из наиболее часто задаваемых мне вопросов, связанных с дросселями. Не все это легко исправить, но, возможно, я смогу указать вам правильное направление.

Моя воздушная заслонка мотовездехода не работает

На самом деле эта проблема возникает довольно часто.Это когда вы переводите воздушную заслонку в открытое положение, и она сразу же немного сдвигается назад. Это приводит к тому, что воздушная заслонка включается только наполовину или полностью отключается.

Конечно, вы могли бы просто стоять и держаться за него, но кто захочет это сделать. Чаще всего это происходит из-за того, что крышка штуцера откручивается. Когда это происходит, маленькие ручки, оказывающие давление на воздушную заслонку, уже не держатся так сильно.

Просто потяните назад резиновую прокладку, защищающую дроссельную трубку, прямо под плунжером дроссельной заслонки, за который вы натягиваете.И вы должны найти небольшую заглушку, которую вкручивают и выкручивают, чтобы отрегулировать плотность заслонки. Слегка затяните его, и вы увидите улучшение.

Квадроцикл работает только с дроссельной заслонкой

Это кричит о проблемах карбюратора повсюду. Конечно, вы можете сначала отрегулировать винт холостого хода, и, возможно, это исправит его. Если винт холостого хода установлен на слишком низкое значение холостого хода, двигатель будет глохнуть каждый раз, когда вы выключаете воздушную заслонку.

Но вам, вероятно, придется хорошо почистить карбюратор.Я имею в виду все разобрать и очистить, особенно игольчатый / пилотный. Это часто случается, если старый газ слишком долго находится в поплавковой чаше.

Карбюратор склонен к засорению из-за мусора в газе или из-за склеивания старого газа.

Если ни один из этих ответов вам не помог, возможно, вам потребуется заменить воздушную заслонку и трос воздушной заслонки на машине. Обычно это не так. Если вы исключили проблемы с воздушной заслонкой и не знаете, с чего начать, ознакомьтесь с моей статьей ATV: не заводится: общие проблемы и как исправить , чтобы получить пошаговое руководство.

Роб

Это я топлю еще один квадроцикл. Я люблю ездить независимо от того, что это такое: снегоходы, квадроциклы, мотоциклы для бездорожья и все остальное по бездорожью. Я испытал свою долю машин и хотел бы поделиться этим опытом здесь.

Последние сообщения

ссылка на Будет ли квадроцикл работать без воздушного фильтра? Как сделать так, чтобы квадроцикл работал с низким уровнем сжатия?

Будет ли квадроцикл работать с низким уровнем сжатия?

У вас возникли проблемы с запуском двигателя квадроцикла? Как насчет странных шумов, исходящих от двигателя? Если вы ответили «да», возможно, у вашего квадроцикла низкая компрессия.Время от времени квадроцикл может ...

Мотоциклетный дроссель для начинающих

Мотоциклы с карбюратором используют воздушную заслонку для ограничения потока воздуха в двигатель, что приводит к обогащению топливной смеси. При нормальной работе воздушная заслонка используется только при запуске двигателя. Однако могут возникнуть проблемы с карбюратором или воздушной заслонкой, что приведет к проблемам с запуском или работой.

Велосипеды с карбюратором имеют воздушные заслонки

Сначала мы посмотрим, какова функция заслонки и как она связана с карбюратором.Затем мы рассмотрим различные проблемы и предупреждения, которые может дать вам воздушная заслонка о вашем мотоцикле.

Функция дроссельной заслонки мотоцикла

Воздушная заслонка используется для запуска двигателей. Его функция заключается в ограничении (дросселировании) потока воздуха в двигатель. Уменьшение количества воздуха приводит к обогащению топливной смеси, что облегчает запуск мотоцикла. Если у вас возникли проблемы с запуском мотоцикла в холодную погоду, ознакомьтесь с нашим руководством здесь и здесь, чтобы получить советы по устранению неполадок.

Дроссель - это механический рычаг, прикрепленный к рычагу.Карбюратор определяет соотношение воздух-топливо механически. Это соотношение будет регулироваться карбюратором при помощи дроссельной заслонки от водителя. Дроссель позволяет вручную регулировать соотношение воздух-топливо за счет уменьшения потока воздуха в двигатель.

Воздушная заслонка необходима на велосипедах с карбюратором, потому что двигатель требует разного соотношения воздух-топливо при разных температурах. Это связано с изменением плотности воздуха и испарением бензина.

При низких температурах двигатель не испаряет топливо так, как при рабочей температуре.Использование дросселя позволяет обогатить воздушно-топливную смесь за счет уменьшения расхода воздуха. Это увеличит количество испаренного топлива в двигателе, когда двигатель попытается запустить.

После прогрева двигателя воздушную заслонку можно закрыть. Это позволит карбюратору регулировать топливовоздушную смесь.

Как использовать дроссель

Научиться пользоваться дросселем может показаться проблемой для новичков, но на самом деле это очень просто. Воздушная заслонка обычно находится с левой стороны мотоцикла.На Honda Shadow он расположен между цилиндрами, как показано красной стрелкой ниже.

Дроссельная заслонка показана в закрытом положении (не ограничивая поток воздуха).

Когда вы собираетесь заводить мотоцикл, вы должны вытащить заслонку, как показано на изображении ниже.

После того, как двигатель прогреется, вы должны снова задвинуть воздушную заслонку, чтобы она выглядела как на первом изображении. Вот и все, что нужно для управления воздушной заслонкой на мотоцикле с карбюратором.

Когда следует использовать дроссель?

Воздушную заслонку следует использовать только при запуске и прогреве мотоцикла.Вы можете оставить воздушную заслонку включенной, пока двигатель прогреется до рабочей температуры. Может потребоваться оставить заслонку включенной, пока вы едете первую милю или около того, чтобы прогреть байк.

Следует ли использовать дроссель для запуска каждый раз?

Воздушная заслонка предназначена для облегчения запуска мотоцикла. Если вы живете в жарком климате, возможно, нет необходимости заводить велосипед с воздушной заслонкой. Фактически, когда температура достигает 75-80 ° F, мне редко приходится использовать дроссельную заслонку для запуска моей Honda Shadow.

Вы не повредите свой велосипед, если не воспользуетесь дроссельной заслонкой, и вы не повредите свой велосипед, запустив ее с помощью дроссельной заслонки. Вам не нужно использовать воздушную заслонку каждый раз при запуске велосипеда. После того, как вы почувствуете свой велосипед, вы сможете определить по температуре, сколько дроссельной заслонки вам нужно использовать.

Также дроссель не является переключателем включения или выключения. Полный дроссель обеспечивает максимальное ограничение воздуха, тогда как половинный дроссель дает меньшее ограничение воздуха. В холодную погоду вам нужно будет вытягивать воздушную заслонку дальше, чем в теплую погоду.Не забудьте настроить количество дроссельной заслонки в зависимости от температуры.

Больно ли ехать на мотоцикле с включенной воздушной заслонкой?

Другой распространенный вопрос - можно ли ездить с включенной дроссельной заслонкой. Что ж, если вам нужно оставить заслонку включенной, чтобы мотоцикл продолжал работать, у вас есть проблема, которую мы обсудим ниже. Однако, если вы случайно оставите удушье, каковы будут последствия?

К счастью, влияние минимально. Оставление воздушной заслонки на время поездки не должно оказывать длительного воздействия на ваш двигатель.Все, что это сделает, это заставит ваш байк работать богаче, чем обычно. Это может снизить экономию топлива для этой поездки. Если вы оставляете воздушную заслонку на несколько месяцев езды, вы можете загрязнить свечи зажигания из-за богатой топливной смеси.

Не рекомендуется намеренно ездить с включенной дроссельной заслонкой, но если вы сделаете это однажды в синюю луну, не о чем беспокоиться.

Есть ли у мотоциклов с впрыском топлива дроссели?

Прежде чем мы перейдем к некоторым симптомам, связанным с удушением, которые могут быть у мотоцикла, давайте ответим на этот общий вопрос.Ответ - нет, у мотоциклов с впрыском топлива нет механической заслонки.

Велосипед с впрыском топлива не имеет карбюратора. Смеси воздуха и топлива определяются блоком управления двигателем (ЭБУ). Если двигателю нужна богатая топливная смесь для запуска, он может автоматически увеличить количество топлива, впрыскиваемого в цилиндры. Велосипеды с впрыском топлива запускаются намного легче в холодную погоду по сравнению с мотоциклами с карбюратором, однако хорошо работающий и настроенный карбюратор не будет иметь проблем с холодным запуском.

Мотоцикл умирает при выключенной воздушной заслонке

Бывали ли случаи с вами, когда вам просто не терпелось прокатиться? Вынимаете байк, заводите его, и сразу после того, как вы отключаете воздушную заслонку, двигатель глохнет?

Эта проблема обычно связана с засорением пилотного жиклера. Вы спросите, что такое пилотный самолет? Пилотный жиклер - это отверстие в карбюраторе, через которое топливо подается в двигатель при низком уровне открытия дроссельной заслонки. Когда он забивается, ваш двигатель все еще может работать с заслонкой, поскольку вы ограничиваете поток воздуха.Однако как только вы вдавливаете дроссельную заслонку, весь этот воздух устремляется внутрь и создает обедненную топливную смесь. Двигатель изо всех сил пытается создать мощность и умирает.

К сожалению, исправить это обычно не так просто, как заливать присадки в бензобак и дать ему поработать над засорением. В наши дни бензин содержит много чистящих присадок, и если вы регулярно заправляете свой велосипед, скорее всего, добавление присадок не поможет.

Вероятное исправление будет включать разборку карбюратора и тщательную очистку / восстановление карбюратора.Вот краткое руководство от байкбандитов о том, как чистить карбюратор.

Определение дросселя по Merriam-Webster

\ ˈChōk \

переходный глагол

1 : для проверки или блокирования нормального дыхания путем сжатия или закупорки трахеи, отравления или фальсификации имеющегося воздуха. Неосторожный охранник задушил заключенным.

: для проверки или предотвращения роста, развития или активности Цветков засорены сорняками, сорняков.

б : препятствовать заполнению или засорению Уходит сыр сток.

c : для полного заполнения : джема дороги душили с пробками

3 : для обогащения топливной смеси (двигателя) путем частичного перекрытия воздухозаборника карбюратора.

4 : для захвата (чего-либо, например, бейсбольной биты) на некотором расстоянии от конца ручки - обычно используется с вверх Тесто подавило битой и уменьшило его взмах.

непереходный глагол

1 : задыхаться Он подавил костью.

: , чтобы заблокировать или проверить

б : стать или почувствовать сжатие (см. Чувство сжатия 1) в горле (как от сильных эмоций) - обычно используется с вверх подавляет и не может закончить речь

3 : для сокращения хватки, особенно за рукоять летучей мыши. - обычно используется с до

4 : потерять самообладание и не действовать эффективно в критической ситуации. имел шанс выиграть партию но он душил

1 [по народной этимологии из arti choke ] : нитчатый несъедобный центр головки цветка артишока. широко : головка цветка артишока

2 : то, что препятствует проходу или потоку: например,

б : сужение на выходе (как в нефтяной скважине), ограничивающее поток.

d : сужение (например, сужение ствола или насадки) на дульном срезе (см. Вход дульного среза 1, смысл 3) ружья, которое служит для ограничения распространения выстрела.

3 : Акт удушья Несколько удушающих ударов вытеснили пищу из ее горла.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *