ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

зачем нужен прибор, принцип работы элемента и область применения

Электрический дроссель — элемент, применяющийся в различных электротехнических приборах и радиоустройствах. Он регулирует силу тока, разделяя при этом или ограничивая электрические сигналы разной частоты, устраняя пульсацию постоянного тока. Посредством прохождения тока по скрученному проводнику образуется магнитное поле, используемое в электро- и радиотехнике.

Принцип работы

Дроссель функционирует по принципу самоиндукции. По внешнему виду напоминает обычную катушку, работающую по типу электрического трансформатора, хотя конструкция состоит лишь из одной обмотки.

Дроссельная катушка имеет ферромагнитные или стальные пластины, изолированные одна от другой для исключения образования токов Фуко, характеризующихся большими помехами. Прибор выполняет функцию сдерживающего барьера при перепадах напряжения в электросети.

Но именно это устройство относится к низкочастотным. Переменный ток, идущий по сетям, характеризуется большим диапазоном колебаний: от 1 до 1 млрд Герц.

Условно они делятся на такие виды:

  1. Низкие частоты (их ещё называют звуковыми) имеют границы колебаний 20−20000 Гц.
  2. Ультразвуковые: от 20 до 100 кГц .
  3. Сверхвысокие: свыше 100 кГц .

У приборов, работающих на высоких частотах, сердечник заменяется каркасами из пластика или резисторами, служащими основой для обмотки медным проводом. В этом случае дроссельный трансформатор оснащён в несколько слоёв или секционной обмоткой.

Главной технической характеристикой дроссельной катушки является индуктивность (принятые единицы измерения — Генри (Гн), сопротивляемая способность постоянному электрическому току (амплитуда колебаний приближается к нулю) изменением напряжения в требуемых пределах, номинальным подмагничиванием тока.

Используя магнитные сердечники, значительно уменьшаются размеры дросселей с теми же существующими значениями индуктивности. Применение ферритовых и магнитоэлектрических составов благодаря их небольшой ёмкости позволяет пользоваться ими при широких диапазонах.

По предназначению такого типа катушки делятся на три вида:

  1. Переменного тока — применяются для ограничения его в сети.
  2. Катушки насыщения — в стабилизаторах напряжения.
  3. Сглаживающие ослабевают пульсацию выравниваемого тока.

Магнитные усилители — дроссели работают с намагничивающимся сердечником под действием постоянного тока. При других его параметрах соответственно меняется индуктивное сопротивление.

Бывают ещё трёхфазные катушки, применяющиеся в определённых цепях. В наше время различные инженерные задачи решаются с использованием разнообразных типов дросселей.

Применение дросселя

Индуктивность нашла широкое применение в большом разнообразии приборов электротехники, автоматики, радиотехники. Дроссели работают в виде различных электрических фильтров, преобразователей электрической энергии, разных типов электромагнитных реле, а также трансформаторов. Если же конденсатор выполняет накопительную функцию электрического заряда, то индуктивность накапливает электромагнитную энергию. Вот зачем нужен дроссель.

Посредством прохождения электричества по проводу происходит образование постоянного магнитного поля. Это зависит от количества витков: чем их больше на дросселе и больше проходящего через него количества тока, тем сильнее становится магнитное поле элемента. Чтобы увеличить мощность электрического магнита, в прибор следует встраивать ферромагнитный сердечник. Способность дросселя вырабатывать магнитное поле зачастую применяется в электромагнитах, имеющих большую мощность, в различных электромеханических реле, электродвигателях, а также генераторах.

Дроссельная катушка пропускает постоянный электроток с минимальным сопротивлением, но если проходит ток переменной частоты, оказывает большое сопротивление, то есть выступает в роли фильтра. Эта способность, которая называется индуктивностью, применяется для того, чтобы отделить цепь переменной частоты от цепи постоянной частоты тока. Дроссель с наличием стального сердечника применяется в фильтрах блоков питания сетевых выпрямителей, чтобы сглаживать пульсацию переменного тока.

Под воздействием на катушку переменного магнитного поля в ней происходит образование переменного электротока. Это индуктивное свойство применяется в электрических генераторах с постоянным и переменным током.

В них преобразуется механическая энергия в электрическую:

  • гидроэлектростанциями используется энергия падающей воды;
  • генераторы, работающие на жидком топливе, при сжигании бензина или дизеля вырабатывают электричество;
  • тепловые электростанции в качестве топлива используют уголь или же природный газ;
  • в атомных электростанциях механическая энергия получается благодаря нагреву воды.

При прохождении электричества через дроссель вокруг него возникает переменное магнитное поле, оказывающее действие на находящуюся рядом катушку и в ней тоже начинает образовываться переменный электроток.

В этом случае катушка выполняет функции трансформатора, который служит для выравнивания сопротивления нагрузки с внутренними сопротивлениями прибора, вырабатывающего электроэнергию. Трансформаторы применяются во всех отраслях электросвязи, всяческих автоматизированных системах, радиотехнике, различной электронике и т. д.

Электронные аналоги

Обычно индуктивные катушки имеют довольно большие размеры. Для их уменьшения без изменения каких-либо технических характеристик нужно сделать замену индуктивного элемента. Вместо него устанавливается полупроводниковый стабилизатор. Он выполняет функцию транзистора с достаточно высокой мощностью. Так элемент преобразуется в электронный дроссель.

Транзистор полностью компенсирует скачки напряжения в сети, сокращает его пульсацию. Но нужно учесть, что этот элемент выполняет всё-таки полупроводниковую функцию, поэтому в приборах, работающих на высоких частотах, его нерационально применять.

Дроссели маркируют в соответствии с их параметрами, поэтому перепутать тип устройства довольно трудно.

220v.guru

Зачем нужны сетевые дроссели в силовых преобразователях?

Зачем вообще нужны сетевые дроссели? Это — очень важный элемент силовой схемы мощного статического преобразователя, который служит буфером между питающей сетью и самим преобразователем. Сетевой дроссель выполняет несколько очень существенных функций: он повышает коэффициент мощности статического преобразователя в среднем на 30…35 %, не прибегая к сложным схемотехническим ухищрениям; подавляет высшие гармоники входного тока преобразователя, возникающие в неуправляемом выпрямителе; выравнивает линейные напряжения на входе преобразователя при некотором перекосе фаз

Рис. 2.4.6. Внешний вид некоторых типовых дросселей фирмы «Elhand»

питающего напряжения; подавляет быстрые изменения напряжения на входе преобразователя вследствие коммутационных воздействий стороннего оборудования на питающую сеть; снижает скорость нарастания токов короткого замыкания. Тот, кто мало-мальски сталкивался с силовой техникой, знает, что питающее сетевое напряжение под влиянием работы высокочастотных преобразователей, потребляющих ток от сети в импульсном режиме, подвержено искажениям. Сетевые дроссели призваны гасить эти помехи и снижают риск попадания гармоник в питающую сеть. Более того, если в качестве силовых ключей используются тиристоры, сетевые дроссели гарантированно обеспечивают защиту их от лавинного нарастания тока проводимости вплоть до момента переключения [37].

где 1{ — ток основной гармоники;

/5, /7, /и — токи гармоник высших порядков.

Мы уже говорили ранее, что любой статический преобразователь характеризуется определенным значением коэффициента мощности, связанным с его схемотехническим построением. За счет чего снижается коэффициент мощности? За счет появления реактивной составляющей потребляемой мощности и увеличения потребления полной мощности по сравнению с активной. В потребляемом от сети токе появляются, кроме основной, высшие гармоники — 5, 7, 11, 13, 17, 19. В соответствии с известным соотношением коэффициент мощности:

Нетрудно заметить, что чем больше действующие значения высших гармоник тока, тем меньше коэффициент мощности, и тем больше влияние статического преобразователя на питающую сеть. Однако здесь есть одно важное обстоятельство, которое нас выручает: реактивное сопротивление, присутствующее в питающей сети (это могут быть различные реактансы трансформаторов питающих подстанций), может существенно подавлять высшие гармоники. К сожалению, трансформаторных реактансов далеко не всегда хватает для эффективного подавления гармоник, поэтому приходится для преобразователей эти реактансы увеличивать, искусственно вводя сетевые дроссели.

Выбрать соответствующий дроссель фирмы «Elhand» для установки в разрабатываемый преобразователь достаточно просто. Главным условием выбора является соотношение индуктивности подводящих проводов (с учетом реактанса питающего генератора или трансформатора) Ls и собственно индуктивности сетевого дросселя Ld\

где UT — величина напряжения на силовом приборе в момент его коммутации, В;

diT/dt — крутизна нарастания тока проводимости силового прибора, А/с.

Оценить параметры UT и diT/dt в случае использования IGBT приборов несложно — эти данные можно получить из анализа величины выпрямленного питающего напряжения, а также скорости нарастания тока при переключении, который определяется характером нагрузки преобразователя (активная, индуктивная, комбинированная) и скорости коммутации IGBT приборов.

Значительно сложнее оценить значение Ls, так как заранее неизвестно, как будет питаться преобразователь, от какого источника, какой длины окажутся питающие проводники, какой будет их длина и конфигурация. Поэтому фирма «Elhand» рекомендует в любом случае устанавливать в разрабатываемый преобразователь сетевой дроссель, ориентируясь по величине тока, потребляемой от сети. С этой целью, для облегчения такого выбора, специалисты «Elhand» разработали типовой ряд трехфазных дросселей типа ED3N. Некоторые типономиналы из этого ряда приведены в табл. 2.4.1.

Основным проектировочным критерием здесь является допустимое падение напряжения на дросселе в нагруженном состоянии, которое не должно превышать нескольких процентов от номинального напряжения сети:

где UL — падение напряжения на дросселе;

/— частота напряжения сети;

Тип

Параметры, мГн/А

Длина, мм

Ширина, мм

Высота, мм

Масса, кг

ED3N

8,5/3,3

125

85

105

2,3 ,

0,5/70

230

170

200

18

0,15/150

240

190

207

   24_

0,05/400

340

200

295

47

0,03/800

360

245

360

78

Ld

— проектная индуктивность дросселя;

/ — номинальный ток обмотки дросселя.

Следует отметить, что фирма «Elhand» выпускает также моторные трехфазные дроссели ряда ED3S, предназначенные для обеспечения непрерывности протекания тока в обмотках двигателей [38], а также однофазные дроссели компенсации гармоник частоты 100 Гц и 300 Гц типа EDlN и EDlW. Трехфазные моторные дроссели типа ED3S, в принципе, можно использовать в качестве сетевых, а однофазные типа EDlN и EDlW — в качестве сглаживающих элементов сетевых LC-фильтров.

Конечно, дроссели как таковые, являются достаточно тривиальными элементами, которые можно изготавливать в условиях даже очень небольших производственных фирм. Почему же все-таки рекомендуется ориентироваться на покупные дроссели? Ответ очень прост: действительно, теоретически разработать и изготовить любой дроссель несложно, однако не будем забывать о трудозатратах на изготовление, о технологической стороне вопроса, о длительных сроках эксплуатации преобразовательной техники, которая зачастую вынуждена функционировать в жестких климатических и механических условиях среды. Дроссели промышленного изготовления, в частности, поставляемые фирмой «Elhand», полностью отвечают этим требованиям: они производятся фирмой со специализированной отработанной технологией, имеют низкую стоимость, прочны механически, пропитаны вакуумным способом (что позволяет сохранить высокое сопротивление изоляции в условиях повышенной влажности), оснащаются удобными для монтажа клеммами, оптимизированы по габаритам. К сожалению, на момент выхода этой книги из печати полные отечественные аналоги таких дросселей отсутствовали, что ставит в затруднительное положение отечественных разработчиков спецтехники.

Но вернемся к вопросу использования сетевых дросселей для ограничения пусковых токов. Автором книги с помощью компьютерного моделирования в пакете MicroCAP 7.0 была проанализирована реальная схема входной части статического преобразователя мощностью

12 кВт, с сетевым дросселем ED3N и дросселями подавления пульсации 300 Гц типа EDlW, показанная на рис. 2.4.7.

Рис. 2.4.7. Схема входного звена с использованием дросселей «Elhand»

Дроссель L1 — сетевой, дроссели L2, L3 входят в состав LC-фильтpa. Диодный мост типа 160MT120KB (производитель — «International Rectifier»), емкостная часть фильтра составлена из 12 конденсаторов типа B43586-A5687-Q (производитель — «Epcos») с эквивалентной емкостью 1020 мкФ. Фильтр радиопомех, в силу его незначительного влияния на процесс ограничения сверхтоков, из модели исключен. Результаты моделирования показаны на рис. 2.4.8. Из представленного графика видно, что пусковой ток, протекающий через диоды VDl…VD6, не превышает допустимого для диодов, а переходный процесс длится не более 10 мс, что не приведет к срабатыванию установленного на входе преобразователя автоматического выключателя типа АК-50Б (максимальная токовая защита) с номинальным током 25 А и уставкой 121н.

Рис. 2.4.8. Результаты моделирования пусковых токов

Таким образом, сетевой дроссель L1 выполняет две функции: в момент включения он совместно с дросселями L2 и L3 защищает диодный мост от возникновения сверхтоков, а в режиме продолжительной работы осуществляет подавление высокочастотных гармоник.

Источник: Семенов Б. Ю. Силовая электроника: профессиональные решения. — М.: СОЛОН-ПРЕСС, 2011. — 416 c.: ил.

nauchebe.net

Для чего нужен дроссель 🚩 дроссель на материнской плате 🚩 Разное

Дроссель – это специальное техническое устройство, регулирующее расход и способствующее изменению определенных характеристик рабочего тела. По своему виду он похож на пластину, имеющую специальное проходное сечение. Его также можно охарактеризовать как катушку индуктивности. Одной из областей, где он применяется, является компьютерная техника.

В этом случае дроссель используется в цепях питания материнских плат, видеокарт, процессоров, блоков питания и так далее. Последнее время наиболее распространены закрытые индукторы в металлические корпуса для того, чтобы уменьшить излучение, шум и высокочастотный свист при работе катушки.

В автомобильной практике чаще используют словосочетание «дроссельный узел». При этом возможно использование одного из двух видов устройства, то есть механического или электрического дросселя. Он начинает работать после нажатия водителем педали газа, после чего дроссельная заслонка начинает свое движение. Вместе с этим регулируется подача топливно-воздушной смеси, которая поступает в двигательную систему. Эта заслонка соединяется со специальным датчиком, который передает информацию в компьютер, что позволяет определить необходимое количество топлива. В этом случае дроссель располагается между воздушным фильтром и двигателем автомобиля и крепится к двигательной системе.

Люминесцентная лампа не способна подключаться к сети напрямую. Для осуществления ее работы необходимо создать определенные условия подачи напряжения, а также контроль тока. Достичь этих целей помогает целый набор аппаратуры, среди которого есть дроссель.

В данном случае это устройство ограничивает напряжение, которое подается во время горения лампы на электроды. Кроме того, дроссель на короткое время создает высокое пусковое напряжение, которое способно образовать необходимый для зажигания лампы электрический заряд между электродами. В зависимости от того, как действует дроссель, используют определенный тип этого устройства: однофазный или трехфазный тип.

Первый из них применяется для ламп производственного и бытового назначения, а второй для ламп ДРЛ и ДНАТ. Они предназначены для работы в электросети с напряжением 380 или 220 вольт. Располагаются дроссели внутри светильника на корпусе. Можно сделать вывод, что такое оборудование используется в различных устройствах, работа которых связана с электричеством.

www.kakprosto.ru

Для чего нужен дроссель в люминесцентных лампах: принцип работы

Дроссель для люминесцентных ламп – это обязательное устройство для нормального функционирования осветительного прибора. Разобравшись в принципе работы такого приспособления можно правильно подключить светильник к электрической цепи самостоятельно.

Для чего нужен?

Люминесцентная лампа не может работать по принципу простой лампы накаливания. Чтобы обеспечить ее функционирование необходимо дополнительное устройство, которое способно создать импульс для электрического пробоя наполненной газом среды. Таким элементом является дроссель. Он поддерживает требуемую мощность в процессе работы светильника.

Чтобы задействовать люминесцентную лампочку необходимо не только обеспечение доступа тока, а и подача напряжения к ней. Для этого подключают дроссель, который ограничивает нарастание движения электрического заряда при подключении к электросети.

Основными функциями ограничивающего ток устройства являются:

  • обеспечение беспрерывной работы лампы независимо от возникающих в электрической сети отклонений напряжения;
  • организация подачи оптимального и безопасного для конкретного светильника тока, способствующего быстрому разогреву при зажигании электродов;
  • стабилизация разрядов тока при номинальных показателях.

С помощью дросселя в люминесцентной колбе происходит формирование разряда за счет образования в обмотке импульса повышенного напряжения.

Принцип работы

Дроссель функционирует в лампе вместе со стартером. Принцип их действия имеет такую последовательность:

  • при возникновении напряжения в лампе электрические заряды поступают в стартер, который состоит из заполненного инертным газом баллона с контактами и конденсатора;
  • за счет напряжения газ ионизируется и по цепи дросселя проходит ток;
  • происходит возрастание силы тока до 0,5 Ампер за счет разогрева контактов из биметалла и газа;
  • далее происходит нагревание катодов, и освобождаются электроды, подогревая в трубке светильника ртутные пары;
  • ионизация завершается при мгновенном замыкании контактов завершение ионизации происходит при мгновенном замыкании контактов;
  • при понижении температуры стартера осуществляется их быстрое размыкание и прекращение подачи тока к катоду и стартеру.

Заряд, сформировавшийся в ртутных парах, обеспечивает ультрафиолетовое излучение, под воздействием которого возникает освещение видимое человеком.

Технические характеристики

Приобретая дроссель нужно внимательно изучать технические характеристики устройства. Он должен соответствовать параметрам газоразрядного осветительного прибора. Существенную роль играет индуктивность дросселя. Такая величина обозначает индуктивное сопротивление устройства, способствующее регулировке поступающего к светильнику электричества.

Немаловажной величиной является коэффициент потери мощности при поддержке необходимых параметров эклектического питания лампы. Также имеет значение качество изделия.

В основном технические данные отличаются в зависимости от мощности дросселя. Согласно такому значению приспособление делят на три группы – «B», «D» и «C». Некоторые электронные модели имеют показатели климатических условий использования.

Электромагнитный дроссель для люминесцентных ламп

Виды

Дроссели бывают двух видов:

  1. Электронный. Такое приспособление работает без подключения стартера. Основными его достоинствами считаются – высокая скорость включения, небольшие габариты и вес изделия, а также способность обеспечить равномерное свечение лампы без мерцаний. Работает электронный дроссель совершенно бесшумно.
  2. Электромагнитный. Такое устройство для люминесцентных светильников подсоединяется параллельно со стартером. Дроссель электромагнитный имеет несложную конструкцию и надежен в использовании. Такие изделия отличаются невысокой стоимостью. К недостаткам данного приспособления причисляют – длительное включение, наличие характерного шума во время работы, возможность мерцаний при запуске, необходимость установки конденсатора.

Согласно типу сетей, в которые подключаются светильники, дроссели различают:

  • бытовые однофазные устройства – 220 Вольт;
  • трехфазные приспособления для люминесцентных ламп промышленного применения – 380 Вольт.

В некоторых моделях дроссель располагается в специальном кожухе, что позволяет размещать его в светильниках наружного расположения. Многие устройства для обеспечения свечения размещены внутри лампу. Такой вариант позволяет надежно защитить дроссель от влияния различных внешних факторов.

Электронный дроссель для люминесцентных ламп

Устройство и схема

Конструкция дросселя вмещает в себя такие компоненты:

  • сердечник, на который намотана проволока из изолирующего материала;
  • специальная смесь для дополнительной защиты обмоточного провода, изготовлена из устойчивых к возгоранию веществ;
  • термоустойчивый корпус для размещения намотки.

Стандартная схема подключения со стартером – это наиболее простой и распространенный вариант подключения люминесцентных ламп. Несмотря на некоторые недостатки, такое подсоединения имеет хорошие показатели.

Стандартная схема подключения люминесцентных ламп

Подключение

Чтобы подключить дроссель по схеме со стартером следует выполнить несколько простых действий:

  • подсоединить стартер к контактам, которые находятся по бокам на выходе осветительного прибора;
  • на свободные выводы подключить дроссель;
  • конденсатор соединить с питающими контактами.

Подключение всех элементов проводится параллельно. За счет конденсатора можно значительно уменьшить сетевые помехи.

Подключение электромагнитного дросселя к люминесцентной лампе

Как проверить исправность?

Дроссель является достаточно прочным и надежным составным элементом люминесцентной лампы. Поэтому выходит из строя устройство очень редко.

Но все же иногда может возникать обрыв его обмотки или перегорание. Также при нарушении изоляционного слоя между витками дроссель перестает функционировать. Как определить исправность дросселя?

Проверка проводится мультиметром. Прибор, настроенный на величину сопротивления подключают к выводам дросселя. При нарушениях в обмотке на измерительном приборе высвечивается бесконечное сопротивление. Минимальные показатели этого значения свидетельствуют о непригодности изоляции или замыкании между витками.

При перегорании обмотки в катушке ощущается характерный паленый запах, который изначально исходит от детали в процессе ее работы. Все описанные характеристики неисправности дросселя в основном относятся к устройствам электромагнитного типа.

Как заменить?

Иногда при выходе дросселя из строя его начинают ремонтировать. Для этого требуются особые знания и навыки. Чаще всего деталь заменяется. Установку нового дросселя может сделать каждый:

  • полностью отключить подачу электроэнергии в доме;
  • снять дроссель;
  • разъединить крепежи и провода, проводящие к светильнику ток;
  • подключить к ним новый дроссель, вставляя на место старого.

Выполнять замену нельзя при простом отключении лампы, так как напряжение от этого не исчезнет.

Дроссель в люминесцентной лампе – это простой, но необходимый для создания свечения элемент. Имея представление о работе такого устройства можно подключать светильник и заменять в нем нерабочие детали без помощи специалиста.

master-houses.ru

Дроссель – это необходимый элемент цепи :: SYL.ru

Включение и нормальное функционирование любых осветительных приборов невозможно без наличия в электрической системе специального механизма, выполняющего роль регулятора и ограничителя напряжения. Средством, способным создать краткосрочное пусковое напряжение для возникновения электрического разряда, позволяющего включать люминесцентные источники света, является дроссель. Это механизм, наличие которого необходимо в каждой электрической цепи, включающей лампы и другие осветительные приборы.

Принцип работы

Дроссель - это один из элементов цепи, задача которого состоит в уменьшении воздействия токов с определенными диапазонами частот. Механизм способен их задерживать на некоторое время, обеспечивая предотвращение резких перепадов тока. По закону самоиндукции на выходе создается дополнительное краткосрочное пусковое напряжение, которое необходимо для зажигания люминесцентных ламп. Оно длится доли секунды, но этого вполне хватает для зажигания осветительных приборов.

Функции

Дроссель – это катушка индуктивности, для которой характерны высокие показатели сопротивляемости к переменному току и низкие – к постоянному, что позволяет ей защищать источники питания от скачков электрического напряжения в цепи, различных помех, а также создавать электрический разряд, необходимый для начала работы люминесцентных ламп. Благодаря такой способности приборы как регуляторы очень востребованы в случаях, когда в электрической системе, вследствие подключения усилительных устройств, возможно возникновение тока высоких частот.

Дроссель – это устройство для полноценного функционирования люминесцентных приборов.

Характеристика дросселя

Прибор является маленьким электрическим трансформатором. Его выбор, характеристика и внешнее оформление зависят от частот, для которых он предназначен.

Дроссель – это регулятор напряжения в сети, содержащий сердечник, который состоит из изолированных друг от друга стальных пластинок (материал - магнитодиэлектрические сплавы или феррит). Его использование позволяет уменьшить габариты дросселя без снижения его индуктивных показателей.

Покрывается сердечник специальной обмоткой. Она состоит из одного или нескольких витков изолированного провода. Ее функция – пропускать через себя электрические сигналы к дросселю для осуществления дальнейшего противодействия – уменьшения или распределения между источниками в электрической цепи. Количество витков зависит от частот, в которых функционирует дроссель.

Для регулирования силы тока низких частот используются дроссели с одной обмоткой, а для высоких – катушки с несколькими обмотками. Это обусловлено тем, что катушка выступает в качестве барьера при внезапном увеличении напряжения в электрической сети. При высоком росте напряжения или его резком снижении увеличивается риск перегорания лампочек, и тем целесообразнее использовать дроссели с большим количеством витков.

Некоторые высокочастотные устройства могут быть без сердечников. Провода в таких регуляторах наматываются на каркас из пластика.

Разновидности

В зависимости от частот токов, используемых в электрической цепи, дроссели бывают:

  • Низкочастотные. Они используются при частотах, не превышающих 20 кГц. Такая частота в радио- и электротехнике считается звуковой.
  • Переменные. Используются для участков ультразвуковых частот, не превышающих 100 кГц.
  • Высокочастотные. Применимы для частот свыше 100 кГц.

В зависимости от места, в котором выполняется установка дросселей, они бывают двух видов:

  • Открытые. Монтируются в корпусах светильников. Такие дроссели защищены от пыли и влаги.
  • Закрытые. Оснащены специальным защитным коробом, что позволяет свободно монтировать приборы на улице.

В зависимости от вида ламп, для которых они предназначены, различаются приборы:

  • Однофазные. Применяются для люминесцентных источников света в офисных и бытовых электрических сетях с напряжением до 220 вольт.
  • Трехфазные. Используются при подключении ламп ДРЛ и ДНАТ в цепи с напряжением 380 вольт.

Рекомендации по использованию

При наличии определенных достоинств дроссели имеют недостаток – они склонны к перегреву, который возникает вследствие высокого напряжения. Напряжение способно увеличиваться, когда по истечении времени на электродах испаряется специальное щелочное покрытие. Как результат - обрывается обмотка, и электроды перестают получать необходимое для работы напряжение. Перегревы также приводят к замыканиям внутри катушки, что ведет к перегоранию подключенного источника света, его порче.

Чтобы предотвратить возможные перегорания дросселей, важно следовать правилам эксплуатации люминесцентных ламп и вовремя их заменять.

www.syl.ru

Ответы@Mail.Ru: Что такое дроссель?

Дроссель это трансформатор без вторичной обмотки. Дроссель электрический Дроссель — принадлежность многих электротехнических приборов и радиоустройств (выпрямителей, радиоприемников, радиопередатчиков) ; он служит для регулирования силы тока, для того чтобы разделять или ограничивать электрические сигналы различной частоты, устранять пульсации постоянного тока. Его название происходит от немецкого слова «дроссели»— «сокращать» . Дроссель — это та же катушка индуктивности, свойства которой зависят от того, какой частоты электрический ток нужно «сократить» , «задержать» — низкой или высокой. В электротехнике и радиотехнике используют переменные токи с частотой (т. е. количеством колебаний в секунду) от нескольких до сотен миллиардов герц (Гц) . Весь огромный диапазон переменных токов принято условно подразделять на несколько участков. Токи сравнительно небольших частот в пределах от 20 Гц до 20 кГц называют токами низкой, или з в у к о в о й, частот ы, так как они соответствуют частотам звуковых колебаний; переменные токи с частотой от 20 до 100 кГц — токами ультразвуковой частоты, а токи с частотой от 100 кГц и больше — токами высокой частоты. Дроссель низкой частоты похож на электрический трансформатор с одной обмоткой. Обмотка дросселя, содержащая много витков изолированного провода, располагается на собранном из стальных пластин сердечнике и имеет большую индуктивность. Такой дроссель оказывает сильное противодействие всяким изменениям тока, протекающего через обмотку: препятствует его нарастанию и, наоборот, поддерживает убывающий ток. Существуют и дроссели высокой частоты. Их применяют для работы в электрических цепях, где проходят токи высокой частоты. Высокочастотные дроссели делают в виде однослойных или многослойных катушек, часто без сердечника. Они обладают большим сопротивлением для токов высокой частоты и пропускают токи низкой частоты.

в широком смысле слова дроссель - это ограничитель, регулятор. в радиотехнике - катушка индуктивности, обладающая высоким сопротивлением переменному току и малым сопротивлением постоянному. Обычно включается в цепи питания усилительных устройств. Предназначен для защиты источников питания от попадания в них высокочастотных сигналов.

дроссель — катушка индуктивности, обладающая высоким сопротивлением переменному току и малым сопротивлением постоянному. Обычно включается в цепи питания усилительных устройств. Предназначен для защиты источников питания от попадания в них высокочастотных сигналов. На низких частотах используется в фильтрах цепей питания и обычно имеет металлический или ферритовый сердечник. ЗЫ: якорь входит в состав ротора, трансформатор в состав дросселя (катушка без вторичной обмотки) , потому и путаница в названиях

Трасформатор...

Трансформатор и дросель, две обсалютно разные вещи. Электрический трансформатор служит для повышения/понижения напряжения. Электрический дросель обычно используют впаре с газоразрядными лампами. В момент пуска газоразрядной лампы, ток стремится в бесконечность. Дросель как раз этот ток и ограничивает. В последнее время появилось много электронных регулятров для газоразрядных ламп. То что ты видел в магазине несколько названий, скорее всего неграмотность продовцов. Якорь и ротор это не совсем одно и тоже. Одно название применяют к машинам постоянного тока, другое к машинам переменного тока. Там существенные отличия.

Представьте себе длинную трубку для компактности намотанную в спираль, по ней течет вода. После заполнения, трубка начнет играть роль ограничителя напора и одновременно роль буфера, допустим если напор воды изменился - некоторое время после такого дросселя напор будет неизменным, а в случае переменного напряжения - если вы подадите воду с другой стороны, то будет противодействие до определенного момента. Для воды и тока даже характеристики будут аналогичными, самые важные: длина трубки (длина проводника), внутренний диаметр (поперечное сечение).

touch.otvet.mail.ru

Что такое дроссельная заслонка в автомобиле? Принцип работы

Чтобы обеспечивать бесперебойную работу автомобиля, его двигатель должен постоянно подпитываться нужным количеством кислорода. Важно понимать, что при разной мощности и скорости требуется различное количество топлива и воздуха. Именно за регулирование этого вопроса отвечает дроссельная заслонка. По своей природе это клапан, через который осуществляется подача воздуха.

Что представляет и где находится заслонка

Располагается дроссельный механизм между коллектором впуска и воздушным фильтром. Найти его достаточно просто – нужно проследить за креплением воздушного фильтра под капотом и он выведет вас к дросселю.

Принцип работы дроссельной заслонки

Общий принцип работы дроссельной заслонки можно описать следующим образом. При надавливании на педаль акселератора заслонка отходит от своего обычного положения, и образуются небольшие щели, через которые воздух попадает в двигатель, где, смешиваясь с бензином, образует топливную смесь. Больше щель – больше воздуха, больше топлива для работы машины.

Дроссель может быть:

• механическим;

• электрическим.

Механическая дроссельная заслонка

Принцип работы механической заслонки сводится к креплению ее тросиком к педали акселератора. В этом случае, чем сильнее водитель нажимает на педаль газа, тем больше воздуха и топлива попадает в двигатель, что обеспечивает увеличение мощности его работы. Такой принцип работы характерен для бюджетных автомобилей. Он простой в обслуживании, эксплуатации, а также надежен и долговечен.

При этом элементы дроссельной заслонки с механическим приводом объединяются в отдельный блок, состоящий из таких элементов:

• корпуса;

• системы датчиков;

• регулятора холостого хода;

• собственно заслонка, соединенная тросиком с педалью акселератора.

Электрическая дроссельная заслонка

Система заслонки с электрической заслонкой несколько отличается от своего механического собрата. Устанавливаются они на современных типах автомобилей. Главной особенность является возможность электронного управления уровнем подачи воздуха и топлива, путем считывания сведений с определенных датчиков, отвечающих за контроль каждого элемента дросселя. Здесь нет прямой механической связи между акселератором (педаль газа) и дроссельной заслонкой.

Важно понимать, что электрический дроссель имеет многочисленные преимущества перед механическим. Прежде всего, это возможность экономного расхода топлива, обеспечение оптимальных экологических характеристик, высокий уровень безопасности при движении транспортного средства.

Достигается это использованием электронной системы управления, которая в буквальном смысле просчитывает возможные варианты и выбирает лучшие решения. Нужно понимать, что в этом случае каждое действие контролируется системой датчиков, передающих сигналы в общий блок управления.

Дополнительно следует отметить, что система управления получает информацию и с других узлов автомобиля, таких как тормозная система, коробка передач, климатической установки, системы контроля климата и других. В дальнейшем на основании полученной информации «вырабатывается» правильное решение, позволяющее гарантировать комфортный уровень езды и высокую безопасность водителя и пассажиров.

Возможные проблемы дросселя

Нужно учитывать, что наличие большого количества соединительных элементов рано или поздно может оказаться причиной различного рода поломок, либо же способствовать «зависанию» системы с последующим сбоев ее работы.

Если такое произошло, присутствует риск, что транспортное средство начнет немного «тупить», а именно:

• появятся повышенные обороты при работе двигателя на холостом ходу;

• будут проскальзывать плавающие обороты, когда двигатель будет работать;

• во время перехода на нейтральную передачу возможны случаи остановки двигателя;

• расход топлива станет большим нормальной нормы, и его трудно будет контролировать;

• двигатель не будет работать на полную мощь;

• срабатывают сигнализирующие датчики работы заслонки.

В зависимости от типа дроссельного привода (механический, электрический) исправить повреждение можно очисткой, либо же регулировкой. Для этого потребуется провести ряд небольших манипуляций, связанных с проверкой узла крепления заслонки.

Выполняется это путем последовательной разборки всего узла с дальнейшей его диагностикой (визуальным осмотром), очисткой, заменой (при необходимости) поврежденных, либо отработавших свой ресурс частей. Сборка конструкции осуществляется в обратном разбору порядке.

В случае же электрической системы, когда «руководством» всего процесса занимается общий блок управления, целесообразно обеспечивать диагностику в специальном центре, с использованием специализированного, электронно-компьютерного оборудования. Ведь в этом случае проблема может скрываться даже не в дроссельной заслонке, а многочисленных контролирующих ее работу датчиках.

Иногда неприятность находится даже вне системы подачи воздуха. Но, если ее не устранить, она попросту будет блокировать какие-либо действия со стороны дроссельной заслонки. Обычно такие датчики не подлежат ремонту, они меняются только на новые.

Нужно понимать, что неисправность всей топливной системы влечет за собой практически мгновенную остановку автомобиля. Поэтому, если присутствуют даже минимальные намеки на возможные неприятности, следует мгновенно на них реагировать, не скупиться на полную диагностику автомобиля и быстро устранять неполадки.

Поделитесь информацией с друзьями:



shokavto.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о