Таинственный «мар» — журнал За рулем
ДВИГАТЕЛЬ «МЕРСЕДЕС-БЕНЦ»
Хвалить «мерседесы» излишне: их высокие ходовые качества и надежность давно оценили. Подтверждение тому — постоянный спрос на автомобили этой марки, в том числе подержанные. Покупая такие, естественно рассчитывать, что они еще долго прослужат, не подрывая семейный бюджет. Но так бывает не всегда.
НЕЯСНЫЙ СИМПТОМ
Вот одна, можно сказать, типичная история. Наш знакомый, купив «Мерседес» С-класса 1995 года выпуска
(«202-й» кузов), вынужден был тут же «прописаться» в автосервисе. Основная причина — неустойчивая работа двигателя на холостом ходу и провалы при интенсивном разгоне, но далеко не всегда. Никакой системы! К тому же двигатель порой не удавалось пустить в самый неподходящий момент. Поначалу новый хозяин пытался самостоятельно «вылечить» мотор, полагая, что всерьез «мерседесы» не ломаются, и заменил свечи зажигания. Не помогло — пришлось обращаться в автосервис.
Результат? Плачевный. Внимательно обследовали каждый компонент системы, для успокоения проконтролировали фазы ГРМ и компрессию, не забыли подключить компьютер — система в порядке. Как назло, в сервисе двигатель работал четко, без сбоев. А найти неисправность, если она не проявляет себя во время диагностики, совсем не просто.
И вот машина прибыла к нам. Двигатель — «111-й», рабочим объемом 1,8 л с системой распределенного впрыска PMS (фото 1). Кстати, этим двигателем комплектовали модель до середины 1996 года, потом ее сменила новая — HFM. Принципиальное их различие — в способе определения расхода воздуха двигателем. У PMS за это отвечает датчик абсолютного давления, а у HFM — пленочный датчик массового расхода. В остальном системы различаются мало.
ПОДКЛЮЧАЕМ СКАНЕР…
Специалисты называют датчик абсолютного давления МАР-сенсором. Расположен он в блоке управления, который крепится к арке левого переднего колеса, под бачком омывателя (фото 2). Датчик состоит из мембраны, вакуумной камеры, микросхемы с пьезоэлементом и нагрузочного сопротивления. Его внутренняя полость через трубку соединена с задроссельным пространством впускного коллектора. Разъем МАР-сенсора трехконтактный. На один подается напряжение 5 В, второй — выход сигнала, третий — «масса». Когда двигатель не работает, давление воздуха во впускном коллекторе равно атмосферному. На минимальных оборотах холостого хода оно понижается до 300–400 мБар.
Для проверки МАР-сенсора нужен сканер. В нашем распоряжении дилерский, под названием «Стар диагносис». Аппарат громоздкий, в его составе два блока — программный и мультиплексор (фото 3, 4). Диагностический разъем находится в моторном отсеке (фото 4).
Подключаем сканер. Соединение занимает несколько минут — серьезный автомобиль не терпит суеты. Начинаем с проверки показаний МАР-сенсора. На неработающем двигателе давление во впускном коллекторе 975 мБар — норма. Пускаем двигатель — 350 мБар, порядок: с ростом оборотов этот параметр уменьшается. Для точного расчета расхода воздуха блоком управления недостаточно показаний одного датчика абсолютного давления. Поскольку в зависимости от температуры плотность воздуха меняется, в паре с МАР-сенсором работает датчик температуры (фото 5). При пуске холодного двигателя его показания должны совпадать с температурой окружающего воздуха. Разброс показаний обычно — не больше двух градусов.
КОРРЕКЦИЯ
Разобравшись с расходом воздуха, обратимся к так называемым коэффициентам адаптации. Хотя сборка двигателей ныне максимально автоматизирована, собрать два абсолютно одинаковых невозможно. Поясним. Берем несколько моторов одной модели. Для устойчивой работы на холостом ходу каждому потребуется разное количество топлива, а значит, и время открытого состояния форсунок у них будет отличаться. Отклонение от расчетного состояния отражается в поправочных коэффициентах, названных адаптационными. Например, у загрязненных форсунок ниже производительность, из-за чего топливо-воздушная смесь беднее — это тотчас зафиксирует датчик кислорода в выпускной трубе. По его сигналу блок управления увеличит время открытия форсунок. И наоборот, если в цилиндр поступает больше топлива, чем необходимо, время открытого состояния форсунок уменьшится.
В нашем случае эти изменения отслеживают два коэффициента. Первый отвечает за коррекцию подачи топлива на холостом ходу и рассчитывается в миллисекундах, второй — за работу двигателя на частичных нагрузках и выражается в процентах. У нас на холостом ходу коэффициент 0,1 мс, а на частичных нагрузках — 1,04 — хорошие показатели. Согласно документации, смещение допускается до 25%, но это крайний случай. Когда коэффициент увеличивается до 1,17, есть повод задуматься. Владельцу этого «Мерседеса» беспокоиться вроде не стоит. В чем же тогда дело? Может, в способе «организации» холостого хода?
На большинстве двигателей за поддержание минимальных оборотов холостого хода отвечает регулятор (РХХ). Его также называют регулятором добавочного воздуха (РДВ). Он участвует в пуске холодного двигателя, движении накатом, а также при изменении нагрузки с включением мощных потребителей энергии, например кондиционера или гидроусилителя. На этой же машине РДВ нет. Его роль возложена на дроссельный патрубок (фото 6). По команде с блока управления заслонка поворачивается на требуемый угол. На холостом ходу максимальный составляет 5°. У нас 1,9° — опять норма. Впрочем, и так известно, что электронный дроссель — надежный узел. С поломками мы сталкивались редко. Владельцу это «удовольствие» стоит 350 долларов — тем более, что новый необходимо «адаптировать», — чтобы дроссельная заслонка заняла положение, соответствующее сложившимся условиям работы двигателя. Это делаем с помощью сканера.
ОПЫТ НЕ КУПИШЬ!
В нашем случае при работе двигателя на холостом ходу неисправность себя не проявила. Чтобы ее найти, механику пришлось совершить пробную поездку. В первые минуты все, казалось бы, в норме, но вскоре двигатель потерял мощность, в работе появились провалы. Вот она — неисправность! Остается снова подключить сканер и проконтролировать параметры. Ба! Теперь вместо атмосферного давления 975 мБар МАР-сенсор на неработающем двигателе показывает 730 мБар, обманывая блок управления. А тот, опираясь на искаженные данные о расходе воздуха, неправильно вычисляет время открытия форсунок.
К датчику абсолютного давления подобраться сложно: он внутри неразборного блока управления. У официального дилера заменяют весь блок, который стоит 1000 долларов. Видимо, поэтому у нас научились восстанавливать этот узел — всего за 200 долларов. Благо, выход из строя МАР-сенсора — довольно типичная неисправность для системы PMS. Случается такое в основном зимой, когда влага из впускного коллектора по вакуумной трубке попадает в датчик и, замерзнув, разрушает его. Но неисправность может проявить себя не сразу или не очень явно, как в нашем случае. Мастера со стажем знают об этом дефекте и с особой тщательностью проверяют МАР-сенсор.
Занимаясь диагностикой разных марок автомобилей, специалист постепенно накапливает опыт. И тогда на ремонт уходит значительно меньше времени, чем при поиске по картам неисправностей.
РОМАН СЕМЕНОВ, ЗАО «37-Й АВТОКОМБИНАТ»
Интерпритация неисправности датчика абсолютного давления MAP в CHERY T11
Плотность воздуха зависит от температуры, чем холоднее воздух, тем он плотнее. Датчик абсолютного давления MAP Chery Tiggo T11, на впускном коллекторе двигателя, отслеживает температуру и плотность входящего воздуха в топливную систему, и передает полученную информацию в блок управления двигателем для расчета расхода топлива. Это особенно важно при запуске в холодную погоду. Опорное напряжение к датчику MAP должна быть близко к 5 вольт, а P0113 код означает, что ЭБУ обнаружил более высокое давление за промежуток времени более 0,5 секунды.
Симптомы P0113
- Плохой запуск двигателя Chery T11
- Загорание индикатора неисправности двигателя
Последствия игнорирования неисправности P0113
В долгосрочной перспективе двигатель, работающий на обедненной смеси, может выйти из строя.
Диагностика неисправности
Во многих случаях проблема с датчиком MAP в Tiggo T11 вызвана изношенной или поврежденной проводкой. Перед тем, как продолжить, проверьте проводку самого датчика. Если проводка в порядке:
- С помощью мультиметра проверьте сопротивление от MAP. Снимите датчик абсолютного давления и осторожно нагрейте его с помощью фена, чтобы увидеть, изменилось ли сопротивление. Помните, что вы можете получить показания сопротивления этого датчика только тогда, когда датчик отключен, поэтому обязательно сначала отсоедините жгут проводов.
- Если сопротивление не меняется после этих шагов, скорее всего, виноват сам датчик. Замените MAP , повторно подключите проводку, очистите коды неисправности в системе и прокатитесь на автомобиле, чтобы проверить, возвращаются ли коды.
Honda Civic Датчики на впускном коллекторе и дроссельной заслонке Honda Civic
Случайная статья узнай что то новое
Honda Civic EJ9: Электроника моторного отсека D14A4, D14A3 и других ДВС
После того как вы открыли в первый раз капот, вы увидели много проводов, датчиков, разъемов. Вы, возможно, испугались предстоящей работе. Но пугаться не стоит, попробую объяснить, какие датчики есть на впускном коллекторе, дроссельной заслонке, а так же их особенности в двигателях D14 и D14.
MAP
Manifold Absolute Pressure — Датчик абсолютного давления впускного коллектора, он же ДМРВ. Чаще всего встречал именно как на изображении снизу, датчик одинаковый по креплениям, и параметрам на многих моделях Honda.
Диапазон измеряемого давления в впускном коллекторе от 10 до 170 кПа. Диапазон выдаваемых значений показан в таблице (есть версии с размерностью от 400 до 4770 мВ).
При расположения ключа сверху, очередность проводов: 1 — Питание, 2 — Земля, 3 — Сигнал. Всего: 3 провода.
Метод измерения MAP
- Рассоединить электрический разъем MAP датчика.
- Включить зажигание, двигатель не запускать!
- Проверить напряжение на разъем, 5.0 В.
- Вывернуть винты датчика MAP.
- Отсоединить датчик от дроссельной заслонки.
- Подключить разъем, включить зажигание, двигатель не запускать!
- Вольтметр подключить к сигнальному проводу (красно-зеленый) и массе кузова.
- Сверить с таблицей параметров значения сопротивлений.
Датчик абсолютного давления MAP Honda Civic
Глубина разрежения, мм рт. ст. | Величина сигнального напряжения, В |
0 | 3.0 |
127 | 2.5 |
254 | 2.0 |
381 | 1.5 |
508 | 1.0 |
635 | 0.5 |
Таблица значений напряжения датчика MAP
TPS
Throttle Position Sensor — датчик положения дроссельной заслонки, отслеживает степень открытия. Полное открытие, полное закрытие, четверть, восьмая часть и т.д. имеет 3 контакта, крепится клепками к дроссельной заслонке на уровне оси поворота. Черный датчик на боку дроссельной заслонки.
Итог: 3 провода, питание от 5 вольт.
IAT и TA
Intake Air Temperature — датчик температуры воздуха во впускном тракте. Двухконтактный датчик по измерению температуры воздуха во впускном тракте, благодаря его измерениям, контрольный блок ECU вносит характеристики в режим холостого хода.
Temperature Air — Датчик температуры воздуха. Тоже датчик воздуха во впускном коллекторе, но устаревший вариант измерения температуры воздуха, так же полярность не имеет значения, в разных моделях использовался один и тот же. Крепился в задней нижней части впускного коллектора на 2х винтах. Винты обычно закислены, шляпки срезаются дремелем. Можно менять с разных моделей Honda. Итог: 2 провода, полярность не важна.
Датчик температуры Honda Civic впускного коллектора
Температура, °С | Сопротивление, кОм |
-20 | 12 |
0 | 5 |
20 | 2 |
40 | 1 |
80 | 0.5 |
101 | 0.4 |
121 | 0.2 |
Таблица сопротивлений датчика температуры
EGR
IACV
RACV
Инжекторная форсунка
Форсунка, в двигателях серии мотора D установлено 4 штуки, на каждый цилиндр по 1 форсунке. Необходимы для распыления топлива под действием высокого давления. Благодаря току в обмотке, сердечник открывает или закрывает канал. Сопротивление каждого вида форсунок — разное, поэтому будьте внимательны. Были случаи установки неправильных форсунок, и сгорала часть блока ECU. Более подробнее в статье. Все четыре форсунки одним контактом соединены на сплиттере. По другому контакту, проходит сигнал на форсунку.
Топливная форсунка Honda Civic в разрезе
Случайная статья узнай что то новое
Данная статья актуальна для автомобилей Honda выпуска 1992-2000 годов, таких как Civic EJ9, Civic EK3, CIVIC EK2, CIVIC EK4 и CIVIC FERIO (частично). Информация будет актуальна для владельцев Honda Integra в кузовах DB6, DC1, с моторами ZC, D15B, D16A.
датчик абсолютного давления во впускном коллекторе, датчик температуры отработавших газов.
Рассмотрим, для чего важны данные устройства и элементы. Подробно остановимся на учебном содержании каждого модуля.
Датчик абсолютного давления во впускном коллекторе
Датчик абсолютного давления — это специальный датчик, который оповещает о давлении воздуха в коллекторе.;
Причём, анализируя данные датчика, автомобильный диагност видит не просто давление, а соотношение его характеристик непосредственно в коллекторе и в вакууме (то есть в абсолюте).
Конструктивно датчики могут отличаться, но чувствительный к давлению элемент расположен непосредственно в корпусе датчика. Един и физический принцип работы датчика:
В датчике присутствует герметичный объем воздуха. Именно он поддерживает опорное давление (может быть в 10 раз ниже, нежели атмосферное).
Объём воздуха заслоняет мембрана – диафрагма. На ней стоят пьезорезисторы (подключаются по мостовой схеме). Их сопротивление зависит от сжатия, растягивания мембраны.
Когда мембрана сжимается, растягивается, измеряется электрическое сопротивление.
Чем больше деформирование мембраны, тем больше разница давлений.
Зависимость тока и давления заранее устанавливается производителем для каждого конкретного устройства. Она учтена в алгоритмах управления двигателем (запись делается в электронном блоке).
Важно! Именно датчик абсолютного давления во многих критических ситуациях позволяет определить истинную проблему, связанную с необъяснимо резким повышением расхода топлива.
Чем опасны поломки датчика абсолютного давления?
Что произойдёт, если датчик абсолютного давления во впускном коллекторе выйдет из строя? Возможна реализация нескольких сценариев:- Датчик начнёт показывать неправильные данные о давлении, а блок управления подаст неправильную команду на подачу топлива (как правило, запросит его большее количество).
- У двигателя снизится мощность. Это приведёт к проблемам при подъеме машины вверх, особенно, если в ней большой груз.
- Поломка чревата постоянным переливом бензина и, как следствие, появляется стойкий запах от дроссельной заслонки.
- Обороты холостого хода станут крайне нестабильными.
- В переходных режимах двигателя начнутся «провалы» (чаще всего при переключении передач).
Содержание модуля
Система управления бензиновым двигателем должна знать количество поступаемого воздуха, чтобы впрыснуть нужное количество бензина. Если известны температура, объём и давление воздуха, блок управления может рассчитать его массу. Датчик абсолютного давления во впускном коллекторе (ДАД) нужен для измерения одной из этих величин: давления воздуха.Устройство
Датчик абсолютного давления во впускном коллекторе состоит из измерительного элемента и усилителя. Давление во впускном коллекторе проходит к измерительному элементу через измерительную ячейку. Измерительный элемент состоит из мембраны, которая перекрывает эталонную камеру. Мембрана – это четыре резистора, объединенных мостовой схемой.Когда мембрана деформируется под давлением, одно из этих четырёх сопротивлений измеряет своё значение. Это приводит к образованию дифференциалов напряжения, которые увеличиваются контуром усилителя.
Принцип работы
Измерительный элемент расположен между контрольной камерой, в которой создан постоянный вакуум, и измерительной камерой. Давление воздуха через отверстие во впускном коллекторе достигает измерительного элемента в измерительной камере.Поскольку давление во впускном коллекторе выше давления в контрольной камере, измерительный элемент изгибается.
Чем выше давление во впускном коллекторе, тем сильнее изгибается измерительный элемент. Таким образом, увеличивается дифференциальное напряжение в параллели резисторов. Усилитель преобразует это напряжение в напряжение сигнала значением от 0 до 5 Вольт.
Далее учащимся, которые проходят обучение в программе на базе платформы ELECTUDE, предлагается практическое решение проверки датчика давления во впускном коллекторе.
Датчик давления может выйти из строя. Для проверки датчика давления потребуется вакуумный зажим. С помощью зажима можно изменять давление по всему диапазону измерений, проверяя напряжение сигнала с помощью мультиметра.
Сначала проверяются характеристики датчика. Затем – питание и заземление. В случае использования шланга рекомендуется проверять его на наличие утечек.
Датчик температур отработавших газов
Следующий важный датчик автомобиля – это датчик температуры отработавших газов. Он отвечает за контроль температуры выхлопных газов.Такой контроль важен для того, чтобы компоненты для очистки создавали благоприятные условия работы. Установка таких датчиков важна для решения следующих задач:
- снижения уровня вредных выбросов авто;
- оценки качества топливно-воздушной смеси. Например, растущая температура топливовоздушной смеси может свидетельствовать о признаках детонации;
- определения степени исправности системы управления двигателем, системы зажигания. Если датчик отсутствует, некорректно работает, существенно возрастает риск повреждения деталей этих систем.
Содержание модуля «Датчик температур отработавших газов»
Датчик температуры выхлопных газов – это датчик, с помощью которого блок управления измеряет температуру выхлопных газов. Датчик температуры используется для преобразования оксида азота и предотвращения повреждения компонентов выхлопной системы.
Датчик температуры отработавших газов ввинчивается в выхлопную трубу таким образом, чтобы металлическая измерительная часть попадала в поток выхлопных газов. Разъём датчика часто подключается к датчику с помощью термостойкого измерительного привода.
В датчике установлен транзистор особого типа: температурный резистор или термистор. В зависимости от модели датчика это может быть PTC или NTC-термистор (терморезистор с положительным температурным коэффициентом или с отрицательным температурным коэффициентом).
В течение долгого времени для измерения более высоких температур использовался только PTC-термистор.
Датчик преобразует температуру отработавших газов в сопротивление. Блок управления не может напрямую считать показания сопротивления датчика температуры отработавших газов.
Эта проблема решается путём последовательного подключения к датчику резистора с фиксированным значением. На оба резистора подаётся напряжение от 5 В. Если температура изменяется, распределение напряжения меняется. Таким образом, блок управления определяет температуру отработавших газов.
Трубы, шланги и муфты для систем кондиционирования
Еще один важный модуль системы — «Трубы, шланги и муфты». Трубки, шланги и муфты в системах кондиционирования интенсивно ощущают факторы внешнего воздействия. Среди неполадок системы кондиционирования именно поломки, деформации этих элементов, по наблюдениям диагностов CТО, — на одних из лидирующих мест. Это связано со многими факторами: от огромной нагрузки на систему охлаждения до езды по плохим дорогам, в результате чего трубки, шланги, муфты подвергаются механическим повреждениям.
Содержимое модуля «Трубы, шланги и муфты»
Трубы, шланги и муфты — компоненты соединяющие систему кондиционирования. Они соединены друг с другом с помощью шлангов и труб, по которым хладагент протекает через систему кондиционирования.Муфты на конце труб и шлангов системы кондиционирования позволяют соединить компоненты от системы кондиционирования.
Таким образом, выполнение сервисного обслуживания и ремонта облегчается.
Некоторые компоненты в системе кондиционирования движутся относительно друг друга. Для того, чтобы обеспечить передвижение механизмов, они соединяются друг с другом с помощью гибких шлангов.
Шланг состоит из нескольких слоёв. Благодаря этим слоям шланг достаточно прочный, износостойкий и устойчив к воздействию хладагента и растворенного в нём масла.
Масло в хладагенте может поглощать воду. Специальный состав шланга препятствует попаданию воды в хладагент.
Муфты позволяют отсоединять детали и заменять их при необходимости. В зависимости от типа муфты отсоединение происходит либо с помощью стандартных или с помощью специальных инструментов.
Для прочности на муфту прикрепляют одно или два уплотнительных кольца, которые предотвращают утечку хладагента. Другой тип муфты – компрессионный. В такой муфте металлические поверхности плотно прижаты друг к другу.
Внимание. Ремонт систем кондиционирования может выполнять только сертифицированный специалист!
Для проверки знаний по теме «Трубы, шланги и муфты» предлагается короткий, но важный для закрепления материала и понимания пройденного, тест.
Пропускное отверстие системы кондиционирования
Важный элемент автомобильных систем кондиционирования воздуха – это и пропускное отверстие переменного сечения.Непосредственно в то пропускное отверстие стекает хладагент.
Содержимое модуля «Пропускное отверстие переменного сечения»
Пропускное отверстие переменного сечения расположено за поперечной перегородкой (внутри автомобиля).Хладагент течёт из конденсатора, через фильтр-осушитель, в пропускное отверстие переменного сечения. Затем хладагент поступает в испаритель. Когда хладагент выходит из испарителя, он течёт через измерительную сторону пропускного отверстия переменного сечения в компрессор.
Функция пропускного отверстия переменного сечения
Пропускное отверстие переменного сечения позволяет хладагенту достигать испаритель в необходимом агрегатном состоянии. Поскольку отверстие имеет переменное сечение, то регулируется не только агрегатное состояние, но и количество хладагента.
Когда хладагент течёт через пропускное отверстие переменного сечения, уменьшается давление, температура и точка кипения. В результате хладагент изменяет агрегатное состояние. Как только он поступает в испаритель, хладагент испаряется из-за тепла и потока воздуха. При удалении этого тепла температура потока воздуха падает.
Температура наружного воздуха не всегда одинакова. Если холодный воздух протекает через испаритель, меньшее количество хладагента может изменять агрегатное состояние, по сравнению с тем, когда он нагревается снаружи. Пропускное отверстие переменного сечения пропускает максимальное количество хладагента, которое может испаряться, что предотвращает выход жидкого хладагента из испарителя.
Структура пропускного отверстия переменного сечения
Блок клапанов является широко используемой реализацией пропускного отверстия переменного сечения. Нижняя половина блока клапана обеспечивает снижение давления и температуры. Верхняя половина является измерительной стороной блока клапанов.На верхней части блока клапанов имеется металлический корпус, содержащий чувствительный к температуре элемент и диафрагму. Диафрагма соединена со штифтом управления. Этот штифт управления опирается на шарик, который прижимается пружиной возврата к седлу. Пространство между шариком и седлом называется отверстием.
Принцип действия пропускного отверстия переменного сечения
Когда хладагент выходит из отверстия в нижней половине блока клапанов, увеличивается доступное пространство. Хладагент получает гораздо больше места, поэтому давление резко падает. При понижении давления также уменьшается температура и точка кипения хладагента.Точка кипения хладагента не должна быть слишком высокой. Тепла и потока воздуха должно быть достаточно для достижения точки кипения хладагента, чтобы хладагент испарился. Во время испарения хладагент извлекает большое количество тепла от потока воздуха.
Измерительный элемент
Хладагент изменяет состояние, когда он протекает через испаритель. В дополнение к изменению состояния немного увеличивается температура. Это увеличение температуры расширяет измерительный элемент, благодаря чему диафрагма движется вниз. Шрифт управления следует за движением диафрагмы и толкает шарик вниз против усиления пружины.Когда отверстие открывается дальше, в испаритель поступает больше жидкого хладагента. В результате температура газообразного хладагента, выходящего из испарителя, падает. Измерительный элемент снова охлаждается. Диафрагма перемещается вверх и отверстие становится меньше. После этого температура газообразного хладагента снова повышается, и цикл повторяется до тех пор, пока не будет достигнут баланс.
Ретро-отражение
Еще один переведённый на русский язык модуль в LMS ELECTUDE посвящён ретро-отражению.Феномен ретро-отражения (обратного отражения, световозвращающего отражения) связан с изменением направления распространения волны при попадании на образованную границу между двумя средами. Физически всё достаточно просто: волна снова возвращается в среду, откуда изначально пришла.
Светоотражающая маркировка в виде лент, наклеек на грузовых автомобилях, полуприцепах, прицепах важна для обеспечения безопасности движения, идентификации габаритов транспорта в свете фар других авто.
С момента использования светоотражающей маркировки существенно сократилось как число столкновений с боковыми частями грузовиков, так число наездов попутных машин на грузовики сзади.
Особенно роль ретро-отражателей ценна в условиях плохой инфраструктуры: узком дорожном полотне, узких обочинах.
Содержание модуля «Ретро-отражение»
Как правило, когда грузовик стоит на стоянке, фары выключены. Для того, чтобы другие участники дорожного движения видели автомобиль, его кузов покрыт светоотражающим материалом.
Если во время движения происходят неполадки с освещением, грузовой автомобиль виден водителям других транспортных средств.
На грузовиках устанавливают различные типы отражающих материалов, в частности:
- Пластиковые отражатели,
- Светоотражающая лента,
- Светоотражающие наклейки.
Светоотражающий материал может быть следующих цветов:
- Белый. Этот цвет используется спереди, а иногда и на боковой стороне грузовика.
- Красный. Этот цвет используется на задней части грузовика.
- Оранжевый. Этот цвет используется на боковой стороне грузовика.
Таким образом, новые переведённые модули позволяют получить структурированную информацию и проверить знания по ряду важных тем, которые касаются обслуживания, диагностики легкового и коммерческого транспорта.
Датчик MAP — MAP sensor
Примеры и описания в этой статье относятся исключительно к четырехтактным бензиновым двигателям. Другие типы двигателей, такие как дизельные или двухтактные, могут отличаться точной реализацией, но общие идеи все же применимы.Коллектор датчик абсолютного давления ( датчик МАР ) является одним из датчиков , используемых в двигателе внутреннего сгорания «S Электронная система управления.
Двигатели, которые используют датчик MAP, обычно впрыскиваются . Датчик абсолютного давления в коллекторе передает мгновенную информацию о давлении в коллекторе в электронный блок управления двигателя (ЭБУ). Эти данные используются для расчета плотности воздуха и определения массового расхода воздуха в двигателе, который, в свою очередь, определяет необходимое дозирование топлива для оптимального сгорания (см. Стехиометрию ) и влияет на опережение или замедление момента зажигания . В качестве альтернативы двигатель с впрыском топлива может использовать датчик массового расхода воздуха (датчик массового расхода воздуха) для обнаружения потока всасываемого воздуха. Типичная конфигурация двигателя без наддува использует один или другой, тогда как двигатели с принудительной индукцией обычно используют оба; датчика массового расхода воздуха на заряд трубе , ведущей к корпусу дроссельной заслонки и датчик MAP на впускном тракте пост- турбо .
Данные датчика MAP могут быть преобразованы в данные о воздушных массах с помощью второй переменной, поступающей от датчика IAT (датчик температуры всасываемого воздуха). Это называется методом «скорость-плотность». Скорость двигателя (об / мин) также используется для определения места в справочной таблице для определения заправки, следовательно, плотности скорости (частота вращения двигателя / плотность воздуха). Датчик MAP также может использоваться в приложениях OBD II (бортовая диагностика) для проверки работоспособности клапана EGR ( рециркуляции выхлопных газов), что типично для двигателей General Motors, оснащенных OBD II.
пример
В следующем примере предполагаются одинаковые обороты двигателя и температура воздуха в двигателе без наддува.
- Двигатель, работающий при полностью открытой дроссельной заслонке (WOT) на вершине очень высокой горы, имеет давление в коллекторе около 50 кПа (по существу, равное барометру на этой большой высоте).
- Тот же двигатель на уровне моря будет обеспечивать такое же давление в коллекторе 50 кПа (7,25 фунтов на кв. Дюйм, 14,7 дюйма рт. Ст.) При меньшем (до достижения) WOT из-за более высокого барометрического давления.
Двигатель требует одинаковой массы топлива в обоих условиях, потому что масса воздуха, поступающего в цилиндры, одинакова.
Если дроссельная заслонка полностью открыта в состоянии 2, абсолютное давление в коллекторе увеличится с 50 кПа до почти 100 кПа (14,5 фунтов на кв. Дюйм, 29,53 дюйма ртутного столба), что примерно равно местному барометру, который в условии 2 соответствует уровню моря. Более высокое абсолютное давление во впускном коллекторе увеличивает плотность воздуха, и, в свою очередь, может сжигаться больше топлива, что приводит к более высокой производительности.
Другой пример — изменение оборотов и нагрузки двигателя.
Если двигатель может иметь давление в коллекторе 60 кПа при 1800 об / мин в ненагруженном состоянии, введение нагрузки с дальнейшим открытием дроссельной заслонки изменит конечное давление в коллекторе до 100 кПа, двигатель по-прежнему будет работать на 1800 об / мин, но для его загрузки потребуется другая искра и заправка Доставка.
Сравнение вакуума
Вакуум двигателя — это разница между давлением во впускном коллекторе и атмосферным давлением окружающей среды. Вакуум в двигателе — это «манометрическое» давление, поскольку манометры по своей природе измеряют разность давлений, а не абсолютное давление. Двигатель в основном реагирует на массу воздуха, а не на вакуум, и для расчета массы необходимо абсолютное давление. Масса воздуха, поступающего в двигатель, прямо пропорциональна плотности воздуха, которая пропорциональна абсолютному давлению и обратно пропорциональна абсолютной температуре .
Примечание. Карбюраторы в значительной степени зависят от объемного расхода воздуха и вакуума, и ни один из них напрямую не подразумевает массу. Следовательно, карбюраторы являются точными , но не точными дозаторами топлива. Карбюраторы были заменены более точными методами дозирования топлива, такими как впрыск топлива в сочетании с датчиком массового расхода воздуха (MAF).
EGR тестирование
В соответствии со стандартами OBD II производители транспортных средств должны были проверить работоспособность клапана рециркуляции выхлопных газов (EGR) во время движения. Некоторые производители используют для этого датчик MAP. В этих автомобилях у них есть датчик массового расхода воздуха в качестве основного датчика нагрузки. Затем датчик MAP используется для проверки рациональности и проверки клапана EGR. Они делают это во время замедления транспортного средства, когда во впускном коллекторе имеется низкое абсолютное давление (т.е. во впускном коллекторе присутствует высокий вакуум по отношению к наружному воздуху), модуль управления трансмиссией (PCM) открывает систему рециркуляции отработавших газов. клапан, а затем контролировать значения датчика MAP. Если система рециркуляции отработавших газов работает нормально, абсолютное давление в коллекторе будет увеличиваться по мере поступления выхлопных газов.
Распространенная путаница с датчиками наддува и манометрами
Датчики MAP измеряют абсолютное давление. Датчики или манометры наддува измеряют давление выше установленного абсолютного давления. Это установленное абсолютное давление обычно составляет 100 кПа. Это обычно называется манометрическим давлением. Давление наддува относится к абсолютному давлению — по мере того, как одно увеличивается или уменьшается, другое тоже. Это соотношение один к одному со смещением -100 кПа для давления наддува. Таким образом, датчик MAP всегда будет показывать на 100 кПа больше, чем датчик наддува, измеряющий те же условия. Датчик MAP никогда не будет показывать отрицательные показания, потому что он измеряет абсолютное давление, где ноль — полное отсутствие давления. Вакуум измеряется как отрицательное давление относительно нормального атмосферного давления. Датчики Vacuum-Boost могут отображать отрицательные показания, указывая на вакуум или всасывание (состояние более низкого давления, чем в окружающей атмосфере). В двигателях с принудительным впуском (с наддувом или с турбонаддувом ) отрицательное значение наддува указывает, что двигатель всасывает воздух быстрее, чем подается, создавая всасывание. Всасывание возникает из-за дросселирования в двигателях с искровым зажиганием и отсутствует в дизельных двигателях. В двигателях внутреннего сгорания это часто называют вакуумным давлением.
Короче говоря, в стандартной атмосфере большинство датчиков наддува показывают на одну атмосферу меньше, чем датчик MAP. На уровне моря можно преобразовать наддув в MAP, добавив примерно 100 кПа. Можно преобразовать MAP в повышение, вычитая 100 кПа.
внешние ссылки
Honda Accord | Проверка исправности состояния и замена датчика абсолютного давления
Проверка исправности состояния и замена датчика абсолютного давления в трубопроводе (МАР)
ПРОВЕРКА
|
ЗАМЕНА
|
Датчик абсолютного давления (ДАД,MAP) — 35 — Электрооборудование и электроника
Форумчане, если я что не так написал, поправьте…Нексия 8 клапанов.
ДАД, он же Датчик Абсолютного Давления, или же «вакуумный датчик».
Цель датчика – изменить параметры впрыска и УОЗ (угол опережения зажигания) таким образом, чтобы при изменении нагрузки двигателя (которую он отслеживает по изменению разрежения воздуха во впускном коллекторе, и которое очень сильно зависит от степени нажатия педали газа), атмосферного давления воздуха, параметры двигателя укладывались в экологические нормы, и благодаря этому, ИМХО, экономит топливо.
На моем автомобиле (новом) ДАД умер, прожив всего 6000 км. Причём так хитро умер, что ни на одном этапе нельзя было определить, что виной всему именно он. Возможно, специально обученные люди и смогли бы точно определить виновника, но к моменту комы ДАДа их рядом не нашлось, что привело меня к очень большим расходам, от которых я хочу Вас обезопасить. Всё что написано ниже проявилось только на моей машине в том самом порядке, и, возможно, на Вашей будет выглядеть иначе:
ЭТАП 1. Детонация.
Проявилась при заправке хорошим бензином, со средней нагрузкой, при попытке разогнаться – «звон пальцев». Попытки привести ситуацию в норму – установка фишки на «87», заправка до полного бака 95м – ноль эмоций. Пришлось смириться и тщательнее выбирать силу педалирования газом, не допуская звона.
ЭТАП 2. Потеря мощности.
Субъективно – не едет машина. Тяжело разгоняться, обгонять… Сюда же можно отнести перерасход топлива, небольшой но заметный. Здесь я ещё и поменял свечи, увеличив сумму расходов.
ЭТАП 3. Провалы при трогании с места. Если сильно нажать на педаль и попытаться тронуться резво – провалы и рывки, если педаль нажать меньше – разгоняется нормально. Если начала уже тупить – спасти ситуацию и не прослыть чайником можно только отпусканием педали.
Этап 4. Кома. Глохнет.
Машина наотрез отказывается разгоняться, глохнет и троит. Попытка завести двигатель – безуспешна. Глохнет сразу. Очень, похоже что двигателю не хватает бензина.
На этом этапе нужно сдернуть ПРОВОД (разъем) с ДАД. Не шланг, а именно провод. Конечно, загорится СЕ на приборке, но машина едет «как новая». К сожалению, все мы сильны задним умом, и додумался я отключить ДАД лишь после замены бензонасоса, которая ничем не помогла.
С горящей лампочкой и отключенным датчиком вполне можно ездить. Бензина сожрет больше.
Осложнения:
1. Дефект плавающий, СЕ и мотор-тестер могут показать полную исправность автомобиля. После обездвиживания машины, спустя какое то время, ДАД способен оклематься и вести себя как исправный.
2. Неисправность ДАД слишком похожа на неисправность бензонасоса
3. ДАД способен Ваш автомобиль обездвижить до состояния эвакуатора.
Где найти ДАД?
На задней стенке моторного щита, установлен на переборке «моторный отсек-салон», ближе к правой стороне авто. Отличительный признак – к нему подходит шланг «от двигателя» и провод на разъеме. Подвешен ДАД к переборке на металлическом кронштейне-крючке. Для демонтажа инструментов не надо. Для замены – только ключ на 10, им новый датчик приворачивается на старый крепежный кронштейн двумя болтами М6 с гайками.
ДАД бывают корейский (GM), и российский. От последнего лучше отказаться, по сведениям, он крайне ненадежен и на моей авто скончался именно такой.
И ещё, новые машины комплектуются именно плохими датчиками и при покупке машины лучше сразу приготовится к замене этого ненадёжного и дорогого прибора.
ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА (MAF)
Общее описание
Датчик массового расхода воздуха (MAF) реагирует на количество воздуха, проходящего через камеру, содержащую датчик. Он нечувствителен к плотности воздуха.
Датчик объемного расхода воздуха используется во многих системах для управления двигателями для измерения значения переходной стоимости воздуха. Расход воздуха — один из основных параметров для расчета необходимого количества топлива.MAF обычно размещается после воздушного фильтра и перед дроссельной заслонкой в потоке воздуха, всасываемого в двигатель.
Внешний вид
На рис. 1 показан датчик массового расхода воздуха производства BOSCH, а на рис. 2 показан MAF производства GM.
Рис.1 Рис.2
Типы датчиков
По принципу действия бывают:
- С аналоговым выходным сигналом. Напряжение выходного сигнала датчика зависит от расхода воздуха — датчики VAF и Hot Wire.
- С цифровым выходом. Частота выходного сигнала датчика или рабочий цикл зависит от расхода воздуха — датчики HFM.
В зависимости от типа конструкции:
- Датчик, измеряющий объем (л / ч) воздушного потока — датчик крыльчатки (VAF, также известный как LMM).
- Датчик, измеряющий массу (кг / ч) воздушного потока — датчик массового расхода воздуха Hot Wire (также известный как HLM).
- Датчик, измеряющий массу (кг / ч) воздушного потока — Hot Film MAF (HFM).
В настоящее время наиболее распространенными являются MAF, поскольку они не имеют механических движущихся частей и обладают отличными характеристиками и точностью. Этот тип датчика не чувствителен к пульсациям, связанным с открытием и закрытием впускных клапанов, и показания на выходе не зависят от плотности поступающего воздуха.
Принцип работы датчика массового расхода воздуха
Датчик массового расхода воздуха, измеряющего массу воздушного потока — датчик Hot Wire
Датчик этого типа показан на рис.3. Электрический провод (2) диаметром 70 мкм вставлен в измерительную трубку, расположенную перед дроссельной заслонкой.
Фиг.3
Работа MAF основана на принципе постоянной температуры. Платиновый провод с подогревом, подвешенный в воздушном потоке двигателя (3), является одной из опор моста Уитстона. Постоянная температура около 100 ºС поддерживается за счет увеличения или уменьшения электрического тока, протекающего по цепи, в то время как входящий воздушный поток охлаждает провод.
При увеличении воздушного потока платиновая проволока охлаждается и ее сопротивление уменьшается. Мост резисторов Уитстона асимметричен, и появляется напряжение, которое подается на усилитель и направляется для повышения температуры провода. Этот процесс продолжается до тех пор, пока температура и сопротивление проводника не приведут к равновесию системы. Диапазон токов от 0,5А до 1,2А.
Этот ток также протекает через калибровочный резистор и образует падение напряжения, которое поступает на бортовой контроллер для расчета количества впрыскиваемого топлива.Изменения температуры компенсируются резистором (4), который представляет собой платиновое кольцо, подвешенное в потоке воздуха. Изменения температуры одновременно влияют как на нагретый провод сопротивления (2), так и на резистор температурной компенсации (4), и, таким образом, мост резисторов Уитстона остается сбалансированным.
Во время работы платиновая проволока неизбежно загрязняется. Для предотвращения загрязнения после выключения двигателя провод нагревают до температуры 1000 ºС в течение 1 сек. Таким образом, вся грязь, прилипшая к проволоке, сгорает.Этот процесс контролируется бортовым контроллером.
Датчик массового расхода воздуха, измеряющий массу воздушного потока — Датчик горячей пленки (HFM)
Фиг.4
работают так же, как датчик горячей проволоки, и используют пленочный или металлический решетчатый элемент с центральным нагревом. Одна сторона пленки встречает поток охлаждающего воздуха, в то время как экранированная задняя сторона поддерживает постоянную температуру, а разница по току между ними измеряется и передается в виде прямоугольного цифрового частотного выхода, между примерно 30 Гц на холостом ходу и 150 Гц при полностью открытой дроссельной заслонке. .Датчики с горячей пленкой обычно более надежны и менее подвержены загрязнению, чем датчики с горячей проволокой.
Датчик объемного расхода воздуха MAF — датчик VAF
Датчики объемного расхода воздуха (рис.5) имеют воздушный барьер (4), снабженный возвратной пружиной. Этот барьер помещается в воздушный поток, потребляемый двигателем, и перемещается пропорционально увеличению или уменьшению воздушного потока.
Фиг.5
Датчик также оснащен дополнительным барьером (2), который служит не только для баланса, но и как глушитель от колебаний.
Шлагбаум механически связан со стеклоочистителем потенциометра (3). Напряжение питания подается на потенциометр. Его выходное напряжение зависит от положения барьера, а само положение барьера зависит от объема воздушного потока. Измерительный потенциометр датчика
выполнен на керамической подложке. Выводы резистора делителя напряжения выполнены на подложке, расположены в ряд и покрыты резистивным слоем.
Потенциометр стеклоочистителя прижимается к контактному резистивному слою, и из-за электрического контакта между стеклоочистителем и резистивным слоем напряжение стеклоочистителя всегда равно напряжению в точке контакта с резистивным слоем.Стеклоочиститель с потенциометром механически связан с подвижным барьером для воздушного потока, и каждый раз при изменении положения барьера он также перемещается в постоянном контакте вдоль резистивного слоя, ползая по нему. Эти сдвиги в постоянном контакте вдоль резистивного слоя изнашивают потенциометр, что со временем приводит к повреждению измерительного потенциометра. Следовательно, износ в некоторых местах контактного резистивного слоя исчезает, остается только керамическая подложка. Перемещение дворника в такой изношенной области вызывает нестабильный или даже потерянный электрический контакт, и выходное напряжение потенциометра больше не будет соответствовать положению подвижного барьера.
В случае серьезного загрязнения или выхода из строя воздушного фильтра воздушные каналы датчика объемного расхода воздуха могут сильно загрязниться. Поэтому подвижный барьер может время от времени заклинивать или даже застревать полностью. Таким образом, выходной сигнал больше не будет соответствовать реальному потоку воздуха.
Недостатком датчика объемного расхода воздуха является то, что он измеряет объем поступающего воздуха. Следовательно, необходимо рассчитать количество топлива, чтобы определить массу воздуха и, таким образом, скорректировать показания датчика в соответствии с плотностью воздуха.Решением этой проблемы является установка дополнительного датчика температуры вместе с датчиком объема воздуха.
Выходной сигнал MAF, выдаваемый BOSCH, представляет собой переменное напряжение в диапазоне 1 — 5 В, значение которого зависит от массы воздуха, проходящего через датчик. При нулевом расходе воздуха (двигатель не работает) выходное напряжение датчика должно быть 0,98–1,02 В. В противном случае датчик считается поврежденным. Увеличение воздушного потока приводит к увеличению выходного напряжения датчика. Этот датчик также может обнаруживать обратные потоки воздуха от впускного коллектора к воздушному фильтру.Выходное напряжение в этом случае уменьшается ниже 1 В, пропорционально размеру возвратного воздушного потока.
Общие проблемы с датчиками массового расхода воздуха:
- Выходной сигнал не изменяется при изменении расхода всасываемого воздуха.
- Отклонение значения выходного сигнала от правильного.
- Снижение скорости срабатывания датчика. В этом случае двигатель значительно утратил «маневренность» и становится трудно запустить двигатель в холодном состоянии.Снижение скорости реакции в случае загрязнения нагревательного резистора и двух датчиков температуры.
ПРИМЕЧАНИЕ: ЭБУ самодиагностики не регистрирует снижение скорости отклика MAF, в результате чего этот сбой не может быть обнаружен путем считывания кодов ошибок с помощью считывателя кодов. Пониженную скорость отклика можно проверить только с помощью осциллографа.
Принцип проверки датчика массового расхода воздуха с помощью осциллографа
При диагностике массового расхода воздуха с помощью осциллографа скорость реакции датчика можно проверить по мгновенному ускорению.В этот момент происходит следующее: Когда двигатель работает на холостом ходу (без нагрузки), воздух, заполняющий впускной коллектор, сильно разбавлен, потому что поток воздуха почти полностью ограничивается дроссельной заслонкой и регулирующим клапаном холостого хода. Абсолютное давление в коллекторе ниже атмосферного на 0,6-0,7 бар. Внутренний объем впускного коллектора пропорционален рабочему объему двигателя, но масса разбавленного воздуха, заполняющего коллектор при работе двигателя на холостом ходу без нагрузки, ничтожна.
В случае резкого ускорения воздух сразу же устремляется во впускной коллектор и быстро заполняет объем коллектора до тех пор, пока абсолютное давление в нем не станет близким к атмосферному. Этот процесс происходит очень быстро, когда поток воздуха через MAF в это время достигает уровня, близкого к расходу воздуха двигателем при максимальной нагрузке. Как только абсолютное давление во впускном коллекторе приближается к атмосферному, воздушный поток, проходящий через MAF, становится пропорциональным оборотам двигателя.
Максимальное значение сигнала выходного напряжения MAF сразу после резкого ускорения должно достигнуть значения, близкого к значению в случае максимальной нагрузки двигателя. Для датчиков производства BOSCH сигнал выходного напряжения должен кратковременно увеличиваться до 4 В.
При диагностике необходимо определить значение выходного сигнала датчика при остановленном двигателе и среднем значении сигнала при работе двигателя на холостом ходу без нагрузки. Значение выходного напряжения 1 В ± 0,02 В соответствует нулевому расходу воздуха.Скорость отклика можно оценить, наблюдая за переходным процессом при подаче питания на датчик. Естественно, что с увеличением загрязнения время переходного процесса выходного сигнала быстро увеличивается.
Процедура проверки работоспособности датчика массового расхода воздуха
Сначала необходимо осмотреть впускной коллектор на предмет трещин, повреждений и проверить его монтажное положение. Существенная разгерметизация воздухосборника может вызвать взрыв двигателя, а разгерметизация ограниченных участков может повлиять на соотношение воздух / топливная смесь.
— ДАТЧИК ОБЪЕМНОГО РАСХОДА ВОЗДУХА MAF (ТИП VAF) —
- Подключите отрицательную клемму вольтметра к массе шасси.
- Определите клемму источника питания и клемму заземления.
- Подсоедините положительную клемму вольтметра к проводу, подключенному к клемме сигнала датчика массового расхода воздуха.
- Снимите воздуховод.
- Снимите узел воздушного фильтра, чтобы клапан (тарелка) массового расхода воздуха легко открывался и закрывался.
- Откройте и закройте клапан несколько раз, чтобы убедиться, что он работает плавно и не заедает ли он.
- Включите зажигание (двигатель не работает) — напряжение, показываемое вольтметром, должно быть в пределах 0,2 ¸ 0,3 В.
- Откройте и закройте MAF несколько раз — напряжение, показываемое вольтметром, должно постепенно увеличиваться, пока не достигнет 4,0 В ¸ 4,5 В.
- Установить воздуховод. Запустите двигатель и оставьте его работать на холостом ходу — вы должны увидеть напряжение в диапазоне 0.5 В ¸ 1,5 В.
- Откройте дроссельную заслонку (нажмите педаль акселератора), чтобы частота вращения двигателя увеличилась до 3000 об / мин — показание напряжения должно быть 2,0 В ¸ 2,5 В.
- Кратковременно открыть дроссельную заслонку (нажать на педаль акселератора) — в этом случае напряжение должно быть больше 3,0 В.
- Если вы выполняете измерения с помощью осциллографа, вы должны наблюдать следующую форму сигнала (рис. 6):
Фиг.6
— Возможные повреждения датчика объема:
Хаотичный выходной сигнал
- Хаотичный выходной сигнал присутствует, когда выходное напряжение датчика массового расхода воздуха изменяется пошагово, падает до нуля или полностью исчезает.
- Когда выходной сигнал MAF хаотичен, причина обычно в резистивном слое датчика или заедании клапана (пластины). В этом случае следует заменить датчик массового расхода воздуха.
- Иногда при движении подвижный рычаг может отойти от токопроводящего провода. Это также может быть причиной хаотического выходного сигнала.
- Снимите верхнюю крышку датчика массового расхода воздуха и проверьте, касается ли рычаг провода при переходе из открытого положения в закрытое.Если рычаг не касается провода, для подачи сигнала его необходимо аккуратно сложить, пока он не коснется провода, либо провод следует тщательно очистить. Это часто помогает устранить причины появления хаотичного выходного сигнала.
Отсутствует сигнал напряжения
- Проверьте опорное напряжение 5.0V на терминале питания датчика массового расхода воздуха.
- Проверьте состояние заземления в клемме массы MAF.
- Если напряжение подано и заземление в порядке, проверьте сигнальный провод между датчиком массового расхода воздуха и бортовым контроллером.
- Если есть проблема с напряжением питания или с заземлением, необходимо проверить состояние проводов между датчиком массового расхода воздуха и бортовым контроллером.
- Если все провода в порядке, необходимо проверить все клеммы питания и заземления бортового контроллера. Если напряжения питания и заземления в норме, под подозрение попадает сам бортовой контроллер.
- Сигнал или опорное напряжение равно напряжению аккумулятора автомобиля.
Проверить сопротивление
- Подключите омметр между сигнальной клеммой датчика массового расхода воздуха и клеммой напряжения питания или между сигнальной клеммой датчика массового расхода воздуха и клеммой массы.
- Откройте и закройте клапан MAF несколько раз — вы должны заметить плавное изменение сопротивления. Когда пластина потока медленно перемещается из закрытого в полностью открытое положение, сопротивление MAF может постепенно увеличиваться и уменьшаться, что является нормальным явлением. Если сопротивление равно бесконечности или нулю, это означает, что датчик массового расхода воздуха неисправен.
- Вы не увидите значения сопротивления массового расхода воздуха в этой процедуре — сопротивление варьируется в широких пределах в зависимости от производителя датчика массового расхода воздуха.Более важным является правильное функционирование датчика, а не соблюдение нормативного значения сопротивления.
- Омметр подключается между клеммой массы датчика массового расхода воздуха и клеммами напряжения питания датчика массового расхода воздуха. Результирующее сопротивление должно быть стабильным. Если сопротивление повышается до бесконечности или равно нулю, датчик массового расхода воздуха необходимо заменить.
— ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА —
(ГОРЯЧИЙ ПРОВОД)
— Проверить выходной сигнал
- Включите зажигание — напряжение должно быть около 1.4В.
- Запустите двигатель и оставьте его работать на холостом ходу — значение напряжения должно быть около 2 В.
- Несколько раз быстро откройте и закройте дроссельную заслонку (нажмите педаль акселератора). Напряжение должно значительно возрасти по сравнению с напряжением, измеренным на холостом ходу и без нагрузки.
- Проверка выходного сигнала датчика массового расхода воздуха Hot Wire слишком сложна, так как невозможно смоделировать состояние полной нагрузки в сервисной мастерской. Это можно сделать только с динамометром.Но описанная ниже процедура позволяет проверить непрерывность выходного сигнала (выполнение этой процедуры с помощью осциллографа считается значительно более надежным).
- Отсоедините воздуховод, чтобы получить доступ к горячей проволоке.
- Включите зажигание.
- Используйте кусок пластиковой трубки, чтобы обдувать горячую проволоку воздухом. Это должно привести к изменению выходного напряжения датчика.
— ДАТЧИК MAF ДЛЯ МАССОВОГО РАСХОДА ВОЗДУХА —
Это цифровые датчики, поэтому выходной сигнал зависит от прямоугольной частоты.Частота зависит от положения дроссельной заслонки — 30 Гц на холостом ходу и 150 Гц при полностью открытой дроссельной заслонке. Поэтому выходной сигнал можно оценить только с помощью осциллографа.
— Измерения осциллографа
Датчик Hot Wire
Подключите активный пробник осциллографа к сигнальной клемме датчика, а пробник заземления — к заземлению шасси.
Быстро нажмите на педаль газа. В исправном рабочем состоянии датчик будет иметь следующие формы сигналов, как на рис.7.
Рис. 7
Обратите внимание на значение напряжения сигнала на первом пике, оно должно быть около 4,5 В.
На рис. 8 показан уровень напряжения в «полумертвом» датчике, а на рис. 9 и рис. 10 — неисправный датчик.
Фиг.8
Фиг.9
Фиг.10
— Возможное повреждение датчика массового расхода воздуха:
Прерванный выходной сигнал
- Сигнал будет прерван, если напряжение не изменится плавно, при падении до нуля или при разрыве цепи.
- Сопротивление массового расхода воздуха проверяется следующим образом: омметр подключается между выводами 2 и 3 разъема датчика массового расхода воздуха — сопротивление должно составлять 2,5 — 3,1 Ом.
- Когда выходной сигнал MAF прерывается с перерывами, а напряжение питания и заземление в норме, это свидетельствует о повреждении датчика массового расхода воздуха. В этом случае его необходимо заменить.
Отсутствует напряжение сигнала
- Проверить подачу питания от аккумуляторной батареи к 5-й клемме разъема датчика массового расхода воздуха.
- Проверить соединение клемм 1 и 2 с массой.
- Если напряжение питания и масса в норме, вам следует проверить соединение между датчиком массового расхода воздуха и бортовым контроллером.
- Если напряжение питания и / или земля плохие, вам следует проверить проводимость источника питания и / или заземляющих проводов между датчиком массового расхода воздуха и бортовым контроллером.
- Если все провода в порядке, следует проверить клеммы питания и заземления бортового контроллера.Если напряжения питания и заземления в норме, под подозрение попадает сам бортовой контроллер.
Датчик горячей пленки (HFM)
Подключите активный пробник осциллографа к сигнальной клемме датчика, а пробник заземления — к заземлению шасси.
Быстро нажмите на педаль газа. В исправном рабочем состоянии датчик будет иметь форму волны, показанную на рис. 11. Частота должна изменяться примерно от 30 Гц до 150 Гц в зависимости от положения дроссельной заслонки.
Фиг.11
Обратите внимание на небольшое закругление краев прямоугольных сигналов. Это нормально и не должно рассматриваться как неисправность.
— Возможное повреждение датчика массового расхода воздуха:
Прерванный выходной сигнал
- Сигнал прерывается, если частота не изменяется плавно, при падении до нуля или при разрыве цепи.
- Когда выходной сигнал прерывается или выходит за пределы допустимого диапазона, а напряжение питания и заземление в норме, это свидетельствует о повреждении датчика массового расхода воздуха.В этом случае его необходимо заменить.
Отсутствует напряжение сигнала
- Включите зажигание и проверьте подачу питания от аккумуляторной батареи к 2-му выводу разъема датчика массового расхода воздуха.
- Включите зажигание и проверьте наличие напряжения + 5В на 4-м выводе.
- Если напряжения питания в норме, вам следует проверить соединение между датчиком массового расхода воздуха и бортовым контроллером.
- Если напряжение питания плохое, следует проверить проводимость источника питания и / или заземляющих проводов между датчиком массового расхода воздуха и бортовым контроллером.
- Если все провода в порядке, следует проверить клеммы питания и заземления бортового контроллера. Если напряжения питания и заземления в норме, под подозрение попадает сам бортовой контроллер.
Китайский производитель реле уровня и датчиков, поставщик магнитных датчиков, реле расхода и датчиков
ЖИВОЙ! ФОРУМ СПЕЦИАЛИСТОВ ПО СЕНСОРАМ!
Видео
Цена FOB: 1 доллар США / Кусок
Мин.Заказ: 5 кусков
Связаться сейчасЦена FOB: 1 доллар США / Кусок
Мин.Заказ: 10 кусочков
Связаться сейчасВидео
Цена FOB: 8 долларов США / Кусок
Мин.Заказ: 1 кусок
Связаться сейчасВидео
Цена FOB: 1-2 доллара США / Кусок
Мин.Заказ: 50 шт.
Связаться сейчасГорячие продукты
Видео
Цена FOB: 1 доллар США / Кусок
Мин.Заказ: 200 шт.
Связаться сейчасЦена FOB: 1 доллар США / Кусок
Мин.Заказ: 200 шт.
Связаться сейчасЦена FOB: 1 доллар США / Кусок
Мин.Заказ: 30 шт.
Связаться сейчасЦена FOB: 1 доллар США / Кусок
Мин.Заказ: 100 штук
Связаться сейчасЦена FOB: 1 доллар США / Кусок
Мин.Заказ: 100 штук
Связаться сейчасВидео
Цена FOB: 1 доллар США / Кусок
Мин.Заказ: 100 штук
Связаться сейчасЦена FOB: 1 доллар США / Кусок
Мин.Заказ: 50 шт.
Связаться сейчасВидео
Цена FOB: 1 доллар США / Кусок
Мин.Заказ: 20 шт.
Связаться сейчасРекомендации продавца
Цена FOB: 1 доллар США / Кусок
Мин.Заказ: 200 шт.
Связаться сейчасЦена FOB: 1 доллар США / Кусок
Мин.Заказ: 100 штук
Связаться сейчасЦена FOB: 100 долларов США / Кусок
Мин.Заказ: 100 штук
Связаться сейчасЦена FOB: 100 долларов США / Кусок
Мин.Заказ: 20 шт.
Связаться сейчасЦена FOB: 1 доллар США / Кусок
Мин.Заказ: 50 шт.
Связаться сейчасВидео
Цена FOB: 140–179 долларов США / Кусок
Мин.Заказ: 1 кусок
Связаться сейчасЦена FOB: 1 доллар США / Кусок
Мин.Заказ: 50 шт.
Связаться сейчасВидео
Цена FOB: 1 доллар США / Кусок
Мин.Заказ: 200 шт.
Связаться сейчасПрофиль компании
{{util.each (imageUrls, function (imageUrl) {}} {{})}} {{if (imageUrls.длина> 1) {}} {{}}} Информация с пометкой «» проверена SGSКраткое описание yuanben
Shanghai Yuanben Magnetoelectric Tech. Co., Ltd., основанная в 2001 году, является профессиональной компанией, занимающейся разработкой и производством магнитных датчиков (измерение и контроль параметров жидкости, а также движение, направление, навигация, энкодеры и датчики скорости).Yuanben — известный поставщик датчиков в Китае, получивший широкое признание после 18 лет разработки. Мы разработали интеллектуальный датчик, можно выбрать множество интерфейсов, таких как RS-485, Profibus-DP, CANopen и т. Д. …
MAR-501 Система мониторинга Marcell Cellular Connected с 1 удаленным беспроводным датчиком воды
Удаленный мониторинг любой собственности
Температура | Влажность | Мощность | Вода
Нет > Требуются телефонные линии или Интернет, или модем, или Wi-Fi, или кабель
> Немедленные уведомления по электронной почте, тексту или телефону по вашему выбору. | > Можно настроить до 9 уведомлений о тревоге, чтобы гарантировать, что ваше предупреждение будет доставлено, что даст вам время для решения любых проблем до обострения ущерба | > Все уведомления можно настроить в соответствии с вашими потребностями. | > Неограниченный доступ к облачному серверу для наблюдения за вашей собственностью на компьютере, планшете или смартфоне из любой точки мира |
HS-501 Система мониторинга Marcell Cellular Connected отслеживает температуру, влажность, воду и состояние электропитания в вашем удаленном доме, офисе, загородном доме или другом чувствительном имуществе.Телефонная линия или подключение к Интернету не требуется. HS-501 Система мониторинга Marcell Cellular Connected взаимодействует с облачным интернет-приложением через внутренний сотовый модем, уже подключенный к крупнейшему оператору мобильной связи в США. HS-501 Система мониторинга Marcell Cellular Connected несколько раз в день отправляет соответствующие данные в вашу облачную учетную запись, где вы можете в любое время контролировать среду на своем удаленном участке с помощью компьютера, ноутбука, планшета или смартфона.
HS-501 MarCELL Система мониторинга с подключением к сотовой связи включает в себя собственный тарифный план недорогой сотовой связи. Sensored Life заключила соглашение о работе в крупнейших сотовых сетях США, чтобы обеспечить максимально широкое покрытие. Вы выбираете тип плана, который соответствует вашим потребностям (ежемесячный, сезонный или годовой). Планы составляют всего 8,25 доллара в месяц, и никаких долгосрочных контрактов не требуется.
Обратите внимание, что этот элемент включает 1 удаленный беспроводной датчик воды
Датчик массового расхода воздуха: простое решение серьезных проблем с помощью небольшого прибора
Как мы обсуждали в предыдущем посте, датчик массового расхода воздуха (MAF) измеряет объем воздуха, поступающего в двигатель, поэтому блок управления двигателем (ECU) может рассчитать, сколько бензина топливные форсунки должны подавать в каждый цилиндр, чтобы создать правильное соотношение топлива и воздуха.Однако иногда неисправность этого маленького прибора может привести к большим проблемам, обычно приводящим к очень плохой работе двигателя.
Каковы симптомы неисправности датчика массового расхода воздуха?
Признаки неисправного датчика массового расхода воздуха могут имитировать такие проблемы, как низкий вакуум, низкая компрессия или низкое давление топлива из-за неисправного топливного насоса. К наиболее частым симптомам неисправности датчика MAS относятся:
- Двигатель с трудом заводится или не может переворачиваться.
- Двигатель глохнет вскоре после запуска.
- Двигатель тормозит или колеблется на холостом ходу или под нагрузкой.
- Двигатель колеблется и дергается при разгоне.
- Икает двигатель.
- Двигатель работает на холостом ходу необычно на обедненной или богатой смеси.
Если вы подозреваете, что датчик массового расхода воздуха неисправен, выполните полную диагностику компьютера. Неисправный датчик массового расхода воздуха генерирует определенный код, поэтому легко определить, является ли он источником проблем с вашим автомобилем.
Поможет ли очистка датчика массового расхода воздуха?
Конечно! Чтобы продлить работу и срок службы датчика массового расхода воздуха, очищайте его либо при каждой замене масла, каждые шесть месяцев, либо при каждой чистке или замене воздушного фильтра.Вот краткое изложение того, как очистить загрязненный датчик массового расхода воздуха:
- Снимите датчик массового расхода воздуха: откройте воздушную камеру вашего автомобиля и с помощью отвертки с плоским жалом вытащите его, но убедитесь, что вы не касаетесь проводов — они легко ломаются, а замена может стоить более 100 долларов.
- Очистите датчик: у вас есть два варианта. Более дешевый вариант — положить датчик в полиэтиленовый пакет со спиртом; переместите пакет так, чтобы спирт смыл грязь и грязь. Более сложный вариант — купить очиститель датчика массового расхода воздуха в магазине автозапчастей и распылить его на датчик.
- Просушите и установите датчик массового расхода воздуха на место: какой бы метод очистки вы ни использовали, дайте датчику просохнуть на воздухе не менее 20 минут. Если датчик не полностью высохнет при повторной установке, он может быть поврежден. Убедившись, что он высох, просто замените датчик в воздушной камере.
Симптомы датчика maf E90
Признаки датчика maf E90Перейти к основному содержанию