ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Система Toyota VVT-i

10.07.2006

Рассмотрим здесь принцип функционирования системы VVT-i второго поколения, которая применяется сейчас на большинстве тойотовских двигателей. Система VVT-i (Variable Valve Timing intelligent — изменения фаз газораспределения) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 40-60° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

1. Конструкция

Исполнительный механизм VVT-i размещен в шкиве распределительного вала — корпус привода соединен со звездочкой или зубчатым шкивом, ротор — с распредвалом.
Масло подводится с одной или другой стороны каждого из лепестков ротора, заставляя его и сам вал поворачиваться. Если двигатель заглушен, то устанавливается максимальный угол задержки (то есть угол, соответствующий наиболее позднему открытию и закрытию впускных клапанов). Чтобы сразу после запуска, когда давление в масляной магистрали еще недостаточно для эффективного управления VVT-i, не возникало ударов в механизме, ротор соединяется с корпусом стопорным штифтом (затем штифт отжимается давлением масла).


Управление VVT-i осуществляется при помощи клапана VVT-i (OCV — Oil Control Valve).
По сигналу блока управления электромагнит через плунжер перемещает основной золотник, перепуская масло в том или ином направлении. Когда двигатель заглушен, золотник перемещается пружиной таким образом, чтобы установился максимальный угол задержки.

2. Функционирование

Для поворота распределительного вала масло под давлением при помощи золотника направляется к одной из сторон лепестков ротора, одновременно открывается на слив полость с другой стороны лепестка. После того, как блок управления определяет, что распредвал занял требуемое положение, оба канала к шкиву перекрываются и он удерживается в фиксированном положении.


При повороте распредвала в сторону более раннего открытия клапанов


При повороте распредвала в сторону более позднего открытия клапанов


В режиме удержания

Функционирование системы VVT-i определяется условиями работы двигателя на различных режимах.

Режим

Фазы

Функции

Эффект

Холостой ход

1

Установлен угол поворота распределительного вала, соответствующий самому позднему началу открытия впускных клапанов (максимальный угол задержки). «Перекрытие» клапанов минимально, обратное поступление газов на впуск минимально.
Двигатель стабильнее работает на холостом ходу, снижается расход топлива

Низкая нагрузка

2

Перекрытие клапанов уменьшается для минимизации обратного поступление газов на впуск. Повышается стабильность работы двигателя

Средняя нагрузка

3

Перекрытие клапанов увеличивается, при этом снижаются «насосные» потери и часть отработавших газов поступает на впуск Улучшается топливная экономичность, снижается эмиссия NOx

Высокая нагрузка, частота вращения ниже средней

4

Обеспечивается раннее закрытие впускных клапанов для улучшения наполнения цилиндров Возрастает крутящий момент на низких и средних оборотах

Высокая нагрузка, высокая частота вращения

5

Обеспечивается позднее закрытие впускных клапанов для улучшения наполнения на высоких оборотах Увеличивается максимальная мощность

При низкой температуре охлаждающей жидкости

Устанавливается минимальное перекрытие для предотвращения потерь топлива Стабилизируется повышенная частота вращения холостого хода, улучшается экономичность

При запуске и остановке

Устанавливается минимальное перекрытие для предотвращения попадания отработавших газов на впуск Улучшается запуск двигателя

3. Вариации

Приведенный выше 4-лепестковый ротор позволяет изменять фазы в пределах 40° (как, например, на двигателях серий ZZ и AZ), но если требуется увеличить угол поворота (до 60° у SZ) — применяется 3-лепестковый или расширяются рабочие полости.

Принцип действия и режимы работы этих механизмов абсолютно аналогичны, разве что за счет расширенного диапазона регулировки становится возможным вообще исключить перекрытие клапанов на холостом ходу, при низкой температуре или запуске.

При повороте распредвала в сторону более раннего открытия клапанов При повороте распредвала в сторону более позднего открытия клапанов В режиме удержания

Евгений, Москва

© Легион-Автодата


Комментарии и вопросы
можно направлять на
[email protected]

Системы ГРМ VVT-i от корпорации Тойота

В этом блоге подробно расскажу Вам о разновидностях Тойотовской системы сдвига фаз газораспределения ДВС.

 

Система VVT-i.

 

VVT-i — это фирменная система газораспределительного механизма от корпорации Toyota. От английского Variable Valve Timing with intelligence, что в переводе означает — интеллектуальное изменение фаз газораспределения. Это второе поколение системы изменения фаз газораспределения Toyota. Устанавливается на автомобили начиная с 1996-го года.

 

Принцип работы достаточно простой: основным управляющим устройством является муфта VVT-i. Изначально фазы открытия клапанов спроектированы, что хорошая тяга присутствует при низких оборотах. После того, как обороты значительно поднимаются, а вместе с ними увеличивается и давление масла, которое открывает клапан VVT-i. После того как клапан открыт, распредвал поворачивается на определенный угол относительно шкива. Кулачки имеют определенную форму и при повороте коленвала открывают впускные клапана немного раньше, а закрывают позже, что благоприятно сказывается на увеличении мощности и крутящего момента на высоких оборотах.

 

Система VVTL-i.

 

VVTL-i — это фирменная система газораспределительного механизма TMC. От английского Variable Valve Timing and Lift with intelligence, что в переводе означает интеллектуальное изменение фаз газораспределения и подъема клапанов.

 

Третье поколение системы VVT. Отличительная особенность от второго поколения VVT-i кроется в английском слове Lift — подъем клапанов. В этой системе распредвал не просто поворачивается в муфте VVT относительно шкива, плавно регулируя время открытия впускных клапанов, но и еще при определенных условиях работы двигателя опускает клапана глубже в цилиндры. Причем подъем клапанов реализован на обоих распредвалах, т.е. для впускных и выпускных клапанов.

 

Если внимательно посмотреть на распредвал, то можно увидеть, что для каждого цилиндра и для каждой пары клапанов имеется одно коромысло, по которому отрабатывают сразу два кулачка — один обычный, а другой увеличенный. При нормальных условиях — увеличенный кулачек отрабатывает в холостую, т.к. в коромысле под ним предусмотрен, так называемый, тапочек, который свободно входит внутрь коромысла, тем самым не позволяя большому кулачку передавать силу нажатия на коромысло. Под тапочком находится стопорный штифт, который приводится в действие давлением масла.

 

Принцип работы следующий: при повышенной нагрузке на высоких оборотах ЭБУ подает сигнал на дополнительный клапан VVT — он практически такой же как и на самой муфте, за исключением небольших отличий по форме. Как только клапан открылся — в магистрали создается давление масла, которое механически воздействует на стопорный штифт и сдвигает его в сторону основания тапочка. Все, теперь тапочек заблокирован в коромысле и не имеет свободного хода. Момент от большого кулачка начинает передаваться коромыслу, тем самым опуская клапан глубже в цилиндр.

 

Основные преимущества системы VVTL-i заключаются в том, что двигатель хорошо тянет на низах и выстреливает на верхах, улучшается топливная экономичность. Недостатками является пониженная экологичность, из-за чего система в такой конфигурации не долго просуществовала.

 

Система Dual VVT-i.

 

Dual VVT-i — это фирменная система газораспределительного механизма TMC. Система имеет общий принцип работы с системой VVT-i, но распространенная на распределительный вал выпускных клапанов. В головке блока цилиндров на каждом шкиве обоих распределительных валах располагаются муфты VVT-i. Фактически это обычная двойная система VVT-i.

 

В итоге теперь ЭБУ двигателя управляет временем открытия впускными и выпускными клапанами, позволяя достигать большую топливную экономичность как на низких оборотах так и на высоких. Двигатели получились более эластичными — крутящий момент распределен равномерно по всему диапазону оборотов двигателя. Учитывая тот факт, что Toyota решила отказаться от регулировки высоты подъема клапанов как в система VVTL-i, поэтому Dual VVT-i лишена ее недостатка заключающегося в относительно невысокой экологичности.

 

Впервые система была установлена на двигатель 3S-GE автомобиля RS200 Altezza в 1998-м году. В настоящее время устанавливается практически на все современные двигатели Toyota, такие как V10 серия LR, V8 серия UR, V6 серия GR, серия AR и ZR.

 

Система VVT-iE.

 

VVT-iE — это фирменная система газораспределительного механизма Toyota Motor Corporation. От английского Variable Valve Timing — intelligent by Electric motor, что в переводе означает интеллектуальное изменение фаз газораспределения с помощью электромотора.

 

Ее смысл точно такой же как у системы VVTL-i. Отличие заключается в самой реализации системы. Распредвалы отклоняются на определенный угол для опережения или запаздывания относительно звездочек с помощью электродвигателя, а не давлением масла, как на предыдущих моделях VVT. Теперь работа системы не зависит от уровня оборотов двигателя и рабочей температуры в отличие от системы VVT-i, которая не способна работать при низких оборотах двигателя и не достигнув рабочей температуры двигателя. На низких оборотах давления масла небольшое и оно не способно сдвинуть лопасть муфты VVT.

 

VVT-iE не имеет недостатков предыдущих версий, т.к. никак не зависит от моторного масла и его давления. Так же у этой системы есть еще один плюс — способность точно позиционировать смещение распредвалов в зависимости от условий работы двигателя. Система начинает свою работу начиная с начала запуска мотора и до его полной остановки. Ее работа способствует высокой экологичности современных двигателей Toyota, максимальной топливной эффективности и мощности.

 

Принцип работы следующий: электромотор вращается вместе с распредвалом в режиме его скорости вращения. При необходимости электромотор либо притормаживается, либо наоборот ускоряется относительно звездочки распредвала, тем самым делая смещения распредвала на необходимый угол, опережая или задерживания фазы газораспределения.

 

Система VVT-iE впервые дебютировала в 2007-м году на Lexus LS 460, установленная в двигатель 1UR-FSE.

 

Система Valvematic.

 

Valvematic – это инновационная система газораспределения компании Toyota, которая позволяет плавно менять высоту подъема клапанов в зависимости от условий работы двигателя. Данная система применяется на бензиновых двигателях. Если разобраться, то система Valvematic – это, ни что иное как, усовершенствованная технология VVTi. При этом новый механизм работает совместно с уже привычной системой изменения времени открытия клапанов.

 

При помощи новой системы Valvematic двигатель становится экономичнее до 10 процентов, так как эта система контролирует количество впускаемого в цилиндр воздуха, и обеспечивает на выходе более низкое содержание углекислого газа, тем самым повышает мощность двигателя. Механизмы VVT-i, которые исполняют главную функцию, помещены внутрь распредвалов. Корпуса приводов соединяются с зубчатыми шкивами, а ротор — с распредвалами. Масло обволакивает либо одну сторону лепестков ротора, либо вторую, тем самым заставляя ротор и вал проворачиваться. Для того чтобы при запуске двигателя не появились удары, ротор делает соединяется стопорным штифтом к корпусу, затем штифт отходит под давлением масла.

 

Теперь о плюсах данной системы. Самым значимым из них является экономия топлива. А так же благодаря системе Valvematic увеличивается мощность двигателя, т.к. происходит постоянная регулировка высоты подъема клапана в момент открытия и закрытия впускных клапанов. И конечно же не забудем про экологию… Система Валвематик существенно сокращает выбросы углекислых газов в атмосферу, до 10-15% в зависимости от модели двигателя. Как у любого технологического новшества, у системы Valvematic также есть негативные отзывы. Одной из причин таких отзывов является посторонний звук в работе ДВС. Этот звук напоминает цоканье плохо отрегулированных зазоров клапанов. Но он проходит после 10-15тыс. км.

 

В настоящий момент система Valvematic устанавливается на автомобили Toyota с объемами двигателей 1.6, 1.8 и 2.0 литра. Впервые система была опробована на автомобилях Toyota Noah. А затем устанавливалась на двигатели серии ZR.

Что означает надпись на двигатель ввт 1. Что такое Двигателя VVT-i. Vvti toyota что это или как работает газораспределение VVT-i

VVTi Toyota что это и как она устроена? VVT-i – так назвали конструкторы автоконцерна Toyota систему управления фазами газораспределения, которые придумали свою систему повышения эффективности работы двигателей внутреннего сгорания.

Это не говорит о том, что такие механизмы только у Тойоты, но рассмотрим этот принцип на её примере.

Начнём с расшифровки.

Аббревиатура VVT-i звучит на языке оригинала как Variable Valve Timing intelligent, что переводим как интеллектуальное изменение фаз газораспределения.

Впервые на рынке эта технология представлена компанией Toyota десять лет назад, в 1996 году. Аналогичные системы есть у всех автоконцернов и брендов, что говорит об их пользе. Называются они, правда, все по-разному, путая рядовых автолюбителей.

Что же привнесла VVT-i в моторостроение? В первую очередь – повышение мощности, равномерной во всём диапазоне оборотов. Моторы стали экономичнее, а следовательно более эффективнее.

Управление фазами газораспределения или управление моментом поднятия и опускания клапанов, происходит при помощи поворота на нужный угол .

Как это реализовано технически, рассмотрим далее.

Vvti toyota что это или как работает газораспределение VVT-i?

Система VVT-i Toyota что это такое и для чего, мы поняли. Время углубиться в её внутренности.

Главные элементы этого инженерного шедевра:

Алгоритм работы всей этой конструкции прост. Муфта, представляющая собой шкив с полостями внутри и ротором, закреплённым на распредвале, заполняется маслом под давлением.

Полостей несколько, и за это наполнение отвечает VVT-i клапан (OCV), действующий по командам блока управления.

Под напором масла ротор вместе с валом может поворачиваться на определённый угол, а вал уже, в свою очередь, определяет, когда подниматься и опускаться клапанам.

В стартовом положении позиция распредвала впускных клапанов обеспечивает максимальную тягу на низких оборотах мотора.

С повышением частоты вращения , система поворачивает распредвал таким образом, чтобы клапаны открывались раньше и закрывались позже – это помогает увеличить отдачу на высоких оборотах.

Как видим, технология VVT-i, принцип работы которой рассмотрели, довольно проста, но, тем не менее, эффективна.

Развитие технологии VVT-i: что ещё придумали японцы?

Есть и другие разновидности этой технологии. Так, к примеру, Dual VVT-i управляет работой не только распредвала впускных клапанов, но и выпускных.

Это позволило достичь ещё более высоких параметров двигателей. Дальнейшее развитие идеи получило название VVT-iE.

Здесь уже инженеры Toyota полностью отказались от гидравлического способа управления положением распредвала, который имел ряд недостатков, ведь для поворота вала необходимо было, чтобы давление масла поднялось до определённого уровня.

Устранить данный недостаток удалось благодаря электромоторам – теперь они поворачивают валы. Вот так вот.

Спасибо за внимание, теперь вы сами можете ответить кому угодно на вопрос «VVT-i Toyota что это такое и как оно работает».

Не забывайте подписываться на наш блог и до новых встреч!

Система VVT-i позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 40-60° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

Основным управляющим устройством является муфта VVT-i. «По умолчанию» фазы открытия клапанов выставлены для хорошей тяги на низких оборотах. После того, как обороты значительно увеличиваются, возросшее давление масла открывает клапан VVT-i, после чего распределительный вал поворачивается на определенный угол относительно шкива. Кулачки имеют определенную форму и при повороте коленчатого вала открывают впускные клапана немного раньше, а закрывают позже, что повышает мощность и крутящий момент на высоких оборотах.

Функционирование системы VVT-i определяется условиями работы двигателя на различных режимах:

[свернуть]

Конструктивные поколения VVT-i

VVT (поколение 1, 1991-2001)

Раскрыть…

Условное 1-е поколение представляет ременной привод ГРМ на оба распредвала и механизм изменения фаз с поршнем с винтовой нарезкой в шкиве впускного распредвала. Применялось на двигателях 4A-GE тип’91 и тип’95 (silvertop и blacktop).

Система VVT (Variable Valve Timing) поколения 1 позволяет ступенчато изменять фазы газораспределения в соответствии с условиями работы двигателя путём поворота распределительного вала впускных клапанов относительно шкива на 30° по углу поворота коленвала.

Корпус привода VVT (с внутренней винтовой нарезкой) соединён со шкивом, внутренняя шестерня с винтовой нарезкой соединена со впускным распредвалом. Между ними находится подвижный поршень с внутренней и внешней нарезкой. При осевом перемещении поршня происходит поворот вала относительно шкива.

1 — демпфер, 2 — винтовая нарезка, 3 — поршень, 4 — распредвал, 5 — возвратная пружина.

Блок управления на основе сигналов датчиков контролирует подачу масла в полости шкива (посредством электромагнитного клапана).

При включении по сигналу ECM электромагнитный клапан сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к поршню и сдвигает его. Смещаясь по винтовой нарезке, поршень проворачивает распредвал в направлении опережения. При выключении электромагнитного клапана поршень перемещается обратно и распредвал возвращается в исходное положение.

При высокой нагрузке и оборотах ниже средних, раннее закрытие впускных клапанов позволяет улучшить наполнение цилиндров. Благодаря этому увеличивается крутящий момента на низких и средних оборотах. На высоких оборотах позднее закрытие впускных клапанов (при отключении VVT) способствует увеличению максимальной мощности.

[свернуть]

VVT-i (поколение 2, 1995-2004)

Раскрыть…

Условное 2-е поколение представляет собой ременной привод ГРМ на оба распредвала и механизм изменения фаз с поршнем с винтовой нарезкой в шкиве впускного распредвала. Применялось на двигателях 1JZ-GE тип’96, 2JZ-GE тип’95, 1JZ-GTE тип’00, 3S-GE тип’97. Существовал вариант с механизмами изменения фаз на обоих распредвалах — первый Dual VVT Toyota (см. ниже, 3S-GE тип’98, Altezza).

Система VVT-i позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя, что достигается поворотом распредвала впускных клапанов относительно шкива в диапазоне 40-60° по углу поворота коленвала.

Привод ГРМ (серия JZ). 1 — привод VVT, 2 — клапан VVT, 3 — датчик положения распредвала, 4 — датчик положения коленвала.

Корпус привода VVT-i (с внутренней винтовой нарезкой) соединен со шкивом, внутренняя шестерня с винтовой нарезкой соединена со впускным распредвалом. Между ними находится подвижный поршень с внутренней и внешней нарезкой. При осевом перемещении поршня происходит плавный поворот вала относительно шкива.

Серия JZ. 1 — корпус (внутренняя нарезка), 2 — шкив, 3 — поршень, 4 — внешняя нарезка вала, 5 — внешняя нарезка поршня, 6 — впускной распредвал.

Привод ГРМ (серия JZ). 1 — впускной распредвал, 2 — золотник, 3 — плунжер, 4 — клапан VVT, 5 — масляный канал (от насоса), 6 — головка блока цилиндров, 7 — внешняя нарезка поршня, 8 — поршень, 9 — привод VVT, 10 — внутренняя нарезка поршня, 11 — шкив.

Блок управления на основе сигналов датчиков контролирует подачу масла в полости опережения и задержки привода VVT посредством электромагнитного клапана. На заглушенном двигателе золотник перемещается пружиной таким образом, чтобы обеспечить максимальный угол задержки.

a — пружина, b — втулка, c — золотник, d — к приводу (полость опережения), e — к приводу (полость задержки), f — сброс, g — давление масла, h — обмотка, j — плунжер.

опережения и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к левой стороне поршня и смещает его вправо. Смещаясь по винтовой нарезке, поршень проворачивает распредвал в направлении опережения.

Электромагнитный клапан по сигналу ECM переключается в позицию задержки и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к правой стороне поршня и смещает его влево. Смещаясь по винтовой нарезке, поршень проворачивает распредвал в направлении задержки.

После установки заданного положения ECM переключает управляющий клапан в нейтральную позицию (позицию удержания ), поддерживая давление с обеих сторон поршня.

Вот так выглядит клапан на примере двигателя 1JZ-GTE:

Фазы газораспределения VVT-i на примере серии JZ:

[свернуть]

VVT-i (поколение 3, 1997-2012)

Раскрыть…

Условное 3-е поколение представляет собой ременной привод ГРМ с шестерённой передачей между распредвалами и механизм изменения фаз с лопастным ротором в передней части выпускного распредвала или в задней части впускного. Применялась на двигателях 1MZ-FE тип’97, 3MZ-FE, 3S-FSE, 1JZ-FSE, 2JZ-FSE, 1G-FE тип’98, 1UZ-FE тип’97, 2UZ-FE тип’05, 3UZ-FE. Позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя путём поворота распредвала впускных клапанов относительно шкива в диапазоне 40-60° (по углу поворота коленвала).

Привод ГРМ (серия MZ). 1 — датчик положения дроссельной заслонки, 2 — датчик положения распредвала, 3 — клапан VVT, 4 — датчик температуры охлаждающей жидкости, 5 — датчик положения коленвала.

Привод ГРМ (1G-FE тип’98). 1 — клапан VVT, 2 — датчик положения распредвала, 3 — датчик температуры охлаждающей жидкости, 4 — датчик положения коленвала.

Привод ГРМ (серия UZ). 1 — клапан VVT, 2 — датчик положения распредвала, 3 — датчик температуры охлаждающей жидкости, 4 — датчик положения коленвала.

Привод VVT с лопастным ротором установлен в передней или задней части одного из распредвалов. При заглушенном двигателе фиксатор удерживает распредвал в положении максимальной задержки для обеспечения нормального запуска.

1MZ-FE, 3MZ-FE. 1 — выпускной распредвал, 2 — впускной распредвал, 3 — привод VVT, 4 — фиксатор, 5 — корпус, 6 — ведомая шестерня, 7 — ротор.

1G-FE тип’98. 1 — корпус, 2 — ротор, 3 — фиксатор, 4 — выпускной распредвал, 5 — впускной распредвал. a — при остановке, b — в работе, c — опережение, d — задержка.

2UZ-FE тип’05. 1 — привод VVT, 2 — впускной распредвал, 3 — выпускной распредвал, 4 — масляные каналы, 5 — ротор датчика положения распредвала.

2UZ-FE тип’05. 1 — корпус, 2 — ротор, 3 — фиксатор, 4 — камера опережения, 5 — камера задержки, 6 — впускной распредвал. a — при остановке, b — в работе, c — давление масла.

Электромагнитный клапан по сигналу ECM переключается в позицию опережения

Электромагнитный клапан по сигналу ECM переключается в позицию задержки

[свернуть]

VVT-i (поколение 4, 1997-…)

Раскрыть…

Условное 4-е поколение VVT-i представляет собой цепной привод ГРМ на оба распредвала и механизм изменения фаз с лопастным ротором на звездочке впускного распредвала. Применялось на двигателях серий NZ, AZ, ZZ, SZ, KR, 1GR-FE тип’04. Позволяет плавно менять фазы газораспределения в соответствии с условиями работы двигателя путём поворота распредвала впускных клапанов относительно звездочки привода в диапазоне 40-60° по углу поворота коленвала.

Привод ГРМ (серия AZ). 1 — управляющий клапан VVT-i, 2 — датчик положения распредвала, 3 — датчик температуры охлаждающей жидкости, 4 — датчик положения коленвала, 5 — привод VVT.

На впускном распредвале установлен привод VVT с лопастным ротором. При заглушенном двигателе фиксатор удерживает распредвал в положении максимальной задержки для обеспечения нормального запуска. В некоторых модификациях может использоваться вспомогательная пружина, которая прикладывает момент в направлении опережения для возврата ротора и надежного срабатывания фиксатора после выключения двигателя.

Привод VVT-i. 1 — корпус, 2 — фиксатор, 3 — ротор, 4 — распредвал. a — при остановке, b — в работе.

4-лепестковый ротор позволяет изменять фазы в пределах 40° (например, на двигателях серий ZZ и AZ), но если требуется увеличить угол поворота (до 60° у SZ) — применяется 3-лепестковый или расширяются рабочие полости. Принцип действия и режимы работы этих механизмов абсолютно аналогичны, разве что за счёт расширенного диапазона регулировки становится возможным вообще исключить перекрытие клапанов на холостом ходу, при низкой температуре или запуске.

Блок управления посредством электромагнитного клапана контролирует подачу масла в полости опережения и задержки привода VVT, основываясь на сигналах датчиков положения распредвалов. На заглушенном двигателе золотник перемещается пружиной таким образом, чтобы обеспечить максимальный угол задержки. Управляющие сигналы от блока к клапану VVT используют широтно-импульсную модуляцию (чем больше опережение, тем импульсы шире, при задержке соответственно короче).

1 — электромагнитный клапан. a — пружина, b — втулка, c — золотник, d — к приводу (полость опережения), e — к приводу (полость задержки), f — сброс, g — давление масла, h — обмотка, j — плунжер.

Электромагнитный клапан по сигналу ECM переключается в позицию опережения и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости опережения, проворачивая его вместе с распредвалом в направлении опережения.

Электромагнитный клапан по сигналу ECM переключается в позицию задержки и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости задержки, проворачивая его вместе с распредвалом в направлении задержки.

При удержании ECM рассчитывает необходимый угол опережения в соответствии с условиями движения, и после установки заданного положения переключает управляющий клапан в нейтральную позицию до следующего изменения внешних условий.

Фазы газораспределения (2AZ-FE):

[свернуть]

VVTL-i (подвид 4-го поколения, 1999-2005)

Раскрыть…

VVTL-i, Variable Valve Timing and Lift intelligent system — подвид технологии VVT-i, которая также умеет управлять высотой и длительностью подъема клапанов (ступенчатой — с использовнием двух кулачков разного профиля). Была впервые внедрена на двигателе 2ZZ-GE. Традиционная VVT-i отвечает за улучшение тяги на низких оборотах, а дополнительная часть — за максимальную мощность и максимальный момент, «подбрасывая угля» при частоте вращения более 6000 об/мин (высота подъема клапанов увеличивается с 7,6 мм до 10,0/11,2 мм).

Сам по себе механизм VVTL-i устроен достаточно просто. Для каждой пары клапанов на распредвале имеется два кулачка с разным профилем («спокойным» и «агрессивным»), а на рокере — два разных толкателя (соответственно, роликовый и скользящий). В нормальном режиме рокер (и клапан) приводится от кулачка со спокойным профилем через роликовый толкатель, а подпружиненный скользящий толкатель работает вхолостую, перемещаясь в рокере. При переходе в форсированный режим давлением масла перемещается стопорный штифт, который подпирает шток скользящего толкателя, жестко соединяя его с рокером. Когда давление жидкости снимается, пружина отжимает штифт и скользящий толкатель вновь освобождается.

Изощренная схема с разными толкателями объясняется тем, что роликовый (на игольчатом подшипнике) дает меньшие потери на трение, но, при равной высоте профиля кулачка, обеспечивает меньшее наполнение (мм*град), а на высоких оборотах потери на трение почти выравниваются, так что с точки зрения получения максимальной отдачи становится выгоднее скользящий. Роликовый толкатель изготовлен из закаленной стали, а скользящий, хоть и использует ферросплав с повышенными противозадирными свойствами, все равно потребовал применения особой схемы орошения маслом, установленной в головке блока.

Самой ненадежной частью схемы является стопорный штифт. Он не может за один оборот распредвала встать в рабочее положение, поэтому неизбежно происходит соударение штока со штифтом при их частичном перекрытии, от чего износ обоих деталей только прогрессирует. В конце концов он достигает такой величины, что штифт постоянно будет отжиматься штоком в исходное положение и не сможет зафиксировать его, поэтому постоянно будет работать только кулачок низких оборотов. С этой особенностью боролись тщательной обработкой поверхностей, уменьшением веса штифта, увеличением давления в магистрали, но до конца победить ее не смогли. На практике по-прежнему случаются поломки оси и штифтов этого хитроумного рокера.

Второй распространенный дефект — срезается болт крепления оси коромысел, после чего та начинает свободно вращаться, подвод масла к рокерам прекращается, и VVTL-i в принципе не выходит в форсированный режим, не говоря уж о нарушении смазки всего узла. Таким образом, схема VVTL-i осталась технологически недоведенной для серийного производства.

[свернуть]

Dual VVT-i

Представляет собой развитие VVT-i условного 4-го поколения.

DVVT-i (2004-…)

Раскрыть…

Система DVVT-i (Dual Variable Valve Timing intelligent) представляет собой цепной привод ГРМ на оба распредвала и механизм изменения фаз с лопастными роторами на звездочках впускного и выпускного распредвалов. Впервые применена на двигателе 3S-GE в 1998 году. Применялась на двигателях серий AR, ZR, NR, GR, UR, LR.

Позволяет плавно изменять фазы газораспределения на обоих распредвалах в соответствии с условиями работы двигателя путём поворота распределительных валов впускных и выпускных клапанов относительно звездочек привода в диапазоне 40-60° (по углу поворота коленвала). Фактически — обычная система VVT-i «в двойном комплекте».

Обеспечивает:

  • бОльшую топливную экономичность как на низких, так и на высоких оборотах;
  • лучшую эластичность — крутящий момент распределен равномерно по всему диапазону оборотов двигателя.

Привод ГРМ (серия ZR). 1 — клапан VVT (выпуск), 2 — клапан VVT (впуск), 3 — датчик положения распредвала (выпуск), 4 — датчик положения распредвала (впуск), 5 — датчик температуры охлаждающей жидкости, 6 — датчик положения коленвала.

Поскольку в Dual VVT-i не используется управление высотой подъема клапанов, как в VVTL-i, то и недостатки VVTL-i также отсутствуют.

На распредвалах установлены приводы VVT с лопастными роторами. При заглушенном двигателе фиксатор удерживает распредвал в положении максимального опережения для обеспечения нормального запуска.

В некоторых модификациях может использоваться вспомогательная пружина, которая прикладывает момент в направлении опережения для возврата ротора и надежного срабатывания фиксатора после выключения двигателя.

Привод VVT (впуск). 1 — корпус, 2 — ротор, 3 — фиксатор, 4 — звездочка, 5 — распредвал. a — при остановке, b — в работе.

Привод VVT (выпуск). 1 — корпус, 2 — ротор, 3 — фиксатор, 4 — звездочка, 5 — распредвал, 6 — возвратная пружина. a — при остановке, b — в работе.

Блок управления посредством электромагнитного клапана контролирует подачу масла в полости опережения и задержки привода VVT, основываясь на сигналах датчиков положения распредвалов. На заглушенном двигателе золотник перемещается пружиной таким образом, чтобы обеспечить максимальный угол задержки для впуска и максимальный угол опережения для выпуска. Управляющие сигналы используют широтно-импульсную модуляцию (аналогично).

Клапан VVT (впуск). a — пружина, b — втулка, c — золотник, d — к приводу (полость опережения), e — к приводу (полость задержки), f — сброс, g — давление масла.

Клапан VVT (выпуск). a — пружина, b — втулка, c — золотник, d — к приводу (полость опережения), e — к приводу (полость задержки), f — сброс, g — давление масла.

Электромагнитный клапан по сигналу ECM переключается в позицию опережения и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости опережения, проворачивая его вместе с распредвалом в направлении опережения (верхняя картинка — впуск, нижняя — выпуск):

Электромагнитный клапан по сигналу ECM переключается в позицию задержки и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости задержки, проворачивая его вместе с распредвалом в направлении задержки (верхняя картинка — впуск, нижняя — выпуск):

При удержании ECM рассчитывает необходимый угол опережения в соответствии с условиями движения, и после установки заданного положения переключает управляющий клапан в нейтральную позицию до следующего изменения внешних условий.

Фазы газораспределения Dual-VVT (2ZR-FE):

[свернуть]

VVT-iE (2006-…)

Раскрыть…

VVT-iE, Variable Valve Timing — intelligent by Electric motor — интеллектуальное изменение фаз газораспределения с помощью электромотора. Отличается от базовой технологии VVT-i тем, что управление фазами газораспределения на впуске производится не гидравлическим давлением масла, а специальным электромотором (выпуск по-прежнему управляется гидравликой). Впервые была применена в 2007 году на двигателе 1UR-FSE.

Принцип работы: электромотор VVT-iE вращается вместе с распределительным валом на тех же оборотах. При необходимости электромотор либо притормаживается, либо ускоряется относительно звездочки распределительного вала, смещая распределительный вал на необходимый угол и тем самым управляя фазами газораспределения. Преимуществом такого решения является возможность высокоточного управления фазами газораспределения, независимо от оборотов двигателя и рабочей температуры масла (в обычной системе VVT-i на низких оборотах и на непрогретом масле давление в маслосистеме недостаточно для сдвига лопастей муфты VVT-i).

[свернуть]

VVT-iW (2015-…)

Раскрыть…

VVT-iW (Variable Valve Timing intelligent Wide) представляет собой цепной привод ГРМ на оба распредвала и механизм изменения фаз с лопастными роторами на звездочках впускного и выпускного распредвалов и расширенным диапазоном регулировки на впуске. Применялась на двигателях 6AR-FSE, 8AR-FTS, 8NR-FTS, 2GR-FKS. Позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя путём поворота распредвала впускных клапанов относительно звездочки привода в диапазоне 75-80° по углу поворота коленвала.

Расширенный, по сравнению с обычным VVT, диапазон приходится главным образом на угол задержки. На втором распредвалу в этой схеме установлен привод VVT-i.

Система VVT-i (Variable Valve Timing intelligent) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала выпускных клапанов относительно звездочки привода в диапазоне 50-55° (по углу поворота коленвала).

Совместная работа VVT-iW на впуске и VVT-i на выпуске обеспечивает следующий эффект:

  1. Режим пуска (EX — опережение, IN — промежуточное положение). Для обеспечения надежного запуска используются два независимых фиксатора, удерживающих ротор в промежуточном положении.
  2. Режим частичной нагрузки (EX — задержка, IN — задержка). Обеспечивается возможность работы двигателя по циклу Миллера/Аткинсона, при этом уменьшаются насосные потери и улучшается экономичность.
  3. Режим между средней и высокой нагрузкой (EX — задержка, IN — опережение). Обеспечивается режим т.н. внутренней рециркуляции отработавших газов и улучшаются условия выпуска.

На впускном распредвалу установлен привод VVT-iW с лопастным ротором. Два фиксатора удерживают ротор в промежуточном положении. Вспомогательная пружина прикладывает момент в направлении опережения для возврата ротора в промежуточное положение и надежного срабатывания фиксаторов. Это обеспечивает нормальный пуск двигателя, заглушенного в положении задержки.

Привод VVT-iW. 1 — центральный болт, 2 — вспомогательная пружина, 3 — передняя крышка, 4 — ротор, 5 — фиксатор, 6 — корпус (звездочка), 7 — задняя крышка, 8 — впускной распредвал. a — стопорный паз.

Управляющий клапан встроен в центральный болт крепления привода (звездочки) к распредвалу. При этом управляющий масляный канал имеет минимальную длину, обеспечивая максимальную скорость отклика и срабатывания при низких температурах. Управляющий клапан приводится штоком плунжера э/м клапана VVT-iW.

a — сброс, b — к полости опережения, c — к полости задержки, d — моторное масло, e — к фиксатору.

Конструкция клапана позволяет независимо управлять двумя фиксаторами, по отдельности для контуров опережения и задержки. Это позвоялет фиксировать ротор в промежуточном положении управления VVT-iW.

1 — внешний штифт, 2 — внутренний штифт. a — фиксатор задействован, b — фиксатор свободен, c — масло, d — стопорный паз.

Электромагнитный клапан VVT-iW установлен в крышке цепи привода ГРМ и соединен непосредственно с приводом изменения фаз впускного распредвала.

1 — электромагнитный клапан VVT-iW. a — обмотка, b — плунжер, c — шток.

При опережении

При задержке

1 — ротор, 2 — от ECM, 3 — электромагнитный клапан VVT-iW. a — направление вращения, b — полость задержки, c — полость опережения, d — к полости опережения, e — от полости задержки, f — сброс, g — давление масла.

При удержании ECM рассчитывает необходимый угол опережения в соответствии с условиями движения. После установки заданного положения ECM переключает управляющий клапан в нейтральную позицию до следующего изменения внешних условий.

На выпускном распредвалу установлен привод VVT-i лопастным ротором (традиционного или нового образца — с управляющим клапаном, встроенным в центральный болт). При заглушенном двигателе фиксатор удерживает распредвал в положении максимального опережения для обеспечения нормального запуска.

Вспомогательная пружина прикладывает момент в направлении опережения для возврата ротора и надежного срабатывания фиксатора после выключения двигателя.

Привод VVT-i (AR). 1 — вспомогательная пружина, 2 — корпус, 3 — ротор, 4 — фиксатор, 5 — звездочка, 6 — распредвал. a — при остановке, b — в работе.

Привод VVT-i (GR). 1 — центральный болт, 2 — передняя крышка, 3- корпус, 4 — ротор, 5 — задняя крышка, 6 — впускной распредвал.

Блок управления посредством электромагнитного клапана контролирует подачу масла в полости опережения и задержки привода VVT, основываясь на сигналах датчиков положения распредвалов. На заглушенном двигателе золотник перемещается пружиной таким образом, чтобы обеспечить максимальный угол опережения.

Клапан VVT (AR). 1 — электромагнитный клапан. a — пружина, b — втулка, c — золотник, d — к приводу (полость опережения), e — к приводу (полость задержки), f — сброс, g — давление масла.

Клапан VVT (GR). 1 — электромагнитный клапан. a — слив, b — к приводу (полость опережения), c — к приводу (полость задержки), d — давление масла.

При опережении электромагнитный клапан по сигналу ECM переключается в позицию опережения и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости опережения, проворачивая его вместе с распредвалом в направлении опережения.

1 — ротор, 2 — от ECM, 3 — электромагнитный клапан VVT-i. a — направление вращения, b — полость задержки, c — полость опережения, d — к полости опережения, e — от полости задержки, f — слив, g — давление масла.

При задержке электромагнитный клапан по сигналу ECM переключается в позицию задержки и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости задержки, проворачивая его вместе с распредвалом в направлении задержки.

1 — ротор, 2 — электромагнитный клапан VVT-i, 3 — от ECM. a — направление вращения, b — давление масла, c — сброс.

1 — ротор, 2 — от ECM, 3 — электромагнитный клапан VVT-i. a — направление вращения, b — полость задержки, c — полость опережения, d — от полости опережения, e — к полости задержки, f — слив, g — давление масла.

При удержании ECM рассчитывает необходимый угол опережения в соответствии с условиями движения и после установки заданного положения переключает управляющий клапан в нейтральную позицию до следующего изменения внешних условий.

10.07.2006

Рассмотрим здесь принцип функционирования системы VVT-i второго поколения, которая применяется сейчас на большинстве тойотовских двигателей.

Система VVT-i (Variable Valve Timing intelligent — изменения фаз газораспределения) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 40-60° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

1. Конструкция

Исполнительный механизм VVT-i размещен в шкиве распределительного вала — корпус привода соединен со звездочкой или зубчатым шкивом, ротор — с распредвалом.
Масло подводится с одной или другой стороны каждого из лепестков ротора, заставляя его и сам вал поворачиваться. Если двигатель заглушен, то устанавливается максимальный угол задержки (то есть угол, соответствующий наиболее позднему открытию и закрытию впускных клапанов). Чтобы сразу после запуска, когда давление в масляной магистрали еще недостаточно для эффективного управления VVT-i, не возникало ударов в механизме, ротор соединяется с корпусом стопорным штифтом (затем штифт отжимается давлением масла).

2. Функционирование

Для поворота распределительного вала масло под давлением при помощи золотника направляется к одной из сторон лепестков ротора, одновременно открывается на слив полость с другой стороны лепестка. После того, как блок управления определяет, что распредвал занял требуемое положение, оба канала к шкиву перекрываются и он удерживается в фиксированном положении.

Режим

Фазы

Функции

Эффект

Холостой ход

Установлен угол поворота распределительного вала, соответствующий самому позднему началу открытия впускных клапанов (максимальный угол задержки). «Перекрытие» клапанов минимально, обратное поступление газов на впуск минимально. Двигатель стабильнее работает на холостом ходу, снижается расход топлива

Перекрытие клапанов уменьшается для минимизации обратного поступление газов на впуск. Повышается стабильность работы двигателя

Перекрытие клапанов увеличивается, при этом снижаются «насосные» потери и часть отработавших газов поступает на впуск Улучшается топливная экономичность, снижается эмиссия NOx

Высокая нагрузка, частота вращения ниже средней

Обеспечивается раннее закрытие впускных клапанов для улучшения наполнения цилиндров Возрастает крутящий момент на низких и средних оборотах

Обеспечивается позднее закрытие впускных клапанов для улучшения наполнения на высоких оборотах Увеличивается максимальная мощность

При низкой температуре охлаждающей жидкости

Устанавливается минимальное перекрытие для предотвращения потерь топлива Стабилизируется повышенная частота вращения холостого хода, улучшается экономичность

При запуске и остановке

Устанавливается минимальное перекрытие для предотвращения попадания отработавших газов на впуск Улучшается запуск двигателя

3. Вариации

Приведенный выше 4-лепестковый ротор позволяет изменять фазы в пределах 40° (как, например, на двигателях серий ZZ и AZ), но если требуется увеличить угол поворота (до 60° у SZ) — применяется 3-лепестковый или расширяются рабочие полости.

Принцип действия и режимы работы этих механизмов абсолютно аналогичны, разве что за счет расширенного диапазона регулировки становится возможным вообще исключить перекрытие клапанов на холостом ходу, при низкой температуре или запуске.

· 20.08.2013

Эта система обеспечивает оптимальный момент впуска в каждом цилиндре для данных конкретных условий работы двигателя. VVT-i практически устраняет традиционный компромисс между большим крутящим моментом на низких оборотах и большой мощностью на высоких. Также VVT-i обеспечивает большую экономию топлива и настолько эффективно снижает выбросы вредных продуктов сгорания, что отпадает необходимость в системе рециркуляции выхлопных газов.

Двигатели VVT-i устанавливаются на всех современных автомобилях Toyota. Аналогичные системы разрабатываются и применяются рядом других производителей (например, система VTEC от Honda Motors). Система VVT-i разработки Toyota заменяет предыдущую систему VVT (2-ступенчатая система управления с гидравлическим приводом), используемую с 1991 г. на 20-клапанных двигателях 4A-GE. VVT-i используется с 1996 г. и управляет моментом открытия и закрытия впускных клапанов путем изменения передачи между приводом распредвала (ремнем, шестерней или цепью) и собственно распредвалом. Для управления положением распредвала используется гидравлический привод (двигательное масло под давлением).

В 1998 г. появился Dual («двойной») VVT-i, управляющий и впускными, и выпускными клапанами (впервые устанавливался на двигателе 3S-GE на RS200 Altezza). Также двойной VVT-i используется на новых V-образных двигателях Toyota, например, на 3,5-литровом V6 2GR-FE. Такой двигатель устанавливается на Avalon, RAV4 и Camry в Европе и Америке, на Aurion в Австралии и на различных моделях в Японии, в т. ч. Estima. Двойной VVT-i будет использоваться в будущих двигателях Toyota, в том числе новом 4-цилиндровом двигателе для нового поколения Corolla. Кроме того, двойной VVT-i используется в двигателе D-4S 2GR-FSE на Lexus GS450h.

За счет изменения момента открытия клапанов пуск и стоп двигателя практически незаметны, т. к. компрессия минимальна, а катализатор очень быстро нагревается до рабочей температуры, что резко снижает вредные выбросы в атмосферу. VVTL-i (расшифровывается как Variable Valve Timing and Lift with intelligence) Основанная на VVT-i, система VVTL-i использует распредвал, обеспечивающий также регулирование величины открытия каждого клапана при работе двигателя на высоких оборотах. Это позволяет обеспечить не только более высокие обороты и большую мощность двигателя, но и оптимальный момент открытия каждого клапана, что приводит к экономии топлива.

Система разработана при сотрудничестве с компанией Yamaha. Двигатели VVTL-i устанавливаются на современных спортивных автомобилях Toyota, таких как Celica 190 (GTS). В 1998 г. Toyota начала предлагать новую технологию VVTL-i для двухраспредвального 16-клапанного двигателя 2ZZ-GE (один распредвал управляет впускными, а другой выпускными клапанами). На каждом распредвале имеется по два кулачка на цилиндр: один для низких оборотов, а другой для высоких (с большим открытием). На каждом цилиндре – два впускных и два выпускных клапана, и каждая пара клапанов приводится в движение одним качающимся рычагом, на который воздействует кулачок распредвала. На каждом рычаге есть подпружиненный скользящий толкатель (пружина позволяет толкателю свободно скользить по «высокооборотному» кулачку, не воздействуя при этом на клапаны). Когда частота вращения вала двигателя ниже 6000 об./м, на качающийся рычаг воздействует «низкооборотный кулачок» через обычный роликовый толкатель (см. рис.). Когда же частота превышает 6000 об./м, компьютер управления двигателем открывает клапан, и давление масла сдвигает шпильку под каждым скользящим толкателем. Шпилька подпирает скользящий толкатель, в результате чего он уже не движется свободно на своей пружине, а начинает передавать качающемуся рычагу воздействие от «высокооборотного» кулачка, и клапаны открываются больше и на большее время.

Долго выбирал для жены авто. На Тойотах езжу давно и уважаю. Королла подходила практически идеально. Но честно говоря симпатичной её назвать, язык не поворачивался. Мне она напоминала лицо несчастных красавиц после пластической операции, когда только что сняли бинты. Когда увидел фотки обновленной — желание значительно усилилось. Ставлю дизайнерам 5+. Стало по крайней мере понятно что имел ввиду тот хирург. Ну да не суть. На вкус и цвет, как известно..

Честные 11,9% кредита от ТОЙОТА-Банка довершили разгром сомнений.

Теперь к вопросу о маркетологах.

Логику этих людей мне видимо никогда не дано понять. Я могу простить «весла» в задних дверях, дешевую штатную магнитолу и т. п. Но отсутствие системы стабилизации В ЛЮБЫХ КОМПЛЕКТАЦИЯХ мягко говоря злит. Я конечно понимаю, что вам нужно разнести машины по разным сегментам, чтоб не было внутренней конкуренции у производителя и т. д. Но BOSСH продает её вам за $200!!! А она между прочим жизни спасает. Нет ничего страшнее лобовой аварии на трассе. А они частенько происходят именно из-за потери сцепления с дорогой. Я лично не моргнув глазом доплачу за неё 10-15 т. р. Уверен я такой не один.

И ещё о грустном.

Всмысле о коробках. Они никогда не были сильной стороной тойот. Не в плане надежности. Тут как раз таки полный порядок. А в плане продвинутости. Тойоты в этом вопросе безнадежно консервативны. Общепризнанно, что «робот» которым изначально оснащали эту машину не удался. Конечно же я очень рад, что его таки заменили классическим автоматом.

НО ПОЧЕМУ ЧЕТЫРЕХСТУПЕНЧАТЫМ?? У всех уже давно пять, а то и шесть передач! Да черт с ней с короллой. Как у вас рука поднялась оснастить 4-х ступкой RAV4?

Ну и наконец последняя ложка дегтя.

Подогрев сидений. Почему только два положения on/off?? Я конечно, не претендую на плавную регулировку как на лексусах. Но Hi/Lo — это ведь то, что доктор прописал. Hi — нагрелось, Lo — езди весь день. А тут On и через пару минут — ваш омлет готов, сэээр! А включать/выключать всю дорогу эти малюсенькие кнопки неудобно, да и небезопасно, так как обе они расположены справа за кочергой коробки передач и нащупать их неглядя редко получается. А слева на этот месте заглушка. But Why???

Вот пожалуй и все из неприятного.

Положа руку на сердце, говорю — машина отличная! Что и неудивительно. Это «мясо» продаж тойот. Инженеры не имеют права на ошибку в этой модели.

Движок 1.6 Dual VVTi — выше всяких похвал! Аплодирую мотористам стоя. Великолепно тянет как снизу так и вверху. Должно быть это, в большой степени, сглаживает длинные передачи коробки. Кстати, несмотря на 4 ступени, коробка как это ни странно, все равно заслуживает как минимум отметки 4+. Недостаток пятой передачи на трассе и не очень большое желание прыгать вниз при обгонах, скорее всего лишь мои выдуманные придирки. Все вполне ожидаемо для автомата родом из 20-го века. Зато в городе коробка ведет себя однозначно на твердую 5! Никаких лишних кикдаунов невОвремя, когда уже поздно визжать мотором, окно в соседнем ряду уже заняли.

Закончить с альянсом движок коробка хотелось бы на позитивных цифрах расхода топлива. По трассе комп. показал 6,4, и судя по заправкам, это недалеко от истины. Про городской расход топлива писать не буду. У всех он будет разный. Опираясь на собственный опыт, могу смело заявлять, что он зависит от двух важных факторов: от темперамента водителя и от его честности. К тому же город-городу рознь. У кого-то проспекты со светофорами через 3 км. А кто-то по жизни стоит в пробках

Теперь о подвеске.

На мой взгляд почти идеальный баланс комфорта и управляемости. Ездил на камри — слишком мягко. Очень валкая в поворотах. Но оно и понятно. Её же делали под толстый зад поедателей гамбургеров с колой. Фактически Россия единственная страна, кроме штатов где камри продают. Видимо никто и не пытался переделать её под нас.

Ездил на тест драйв нового авенсиса. Очень жестко. Особенно сзади. А жаль. Предыдущий «веник» был очень приятным.

Так что королла — это золотая середина. В меру энергоемка. Отлично рулится. Конечно не BMW. но для своего сегмента управляемость весьма приятная

В плане эргономики — все по мне. Может потому что давно езжу на тойотах. А может просто «евромобилль — 1 штука». В салоне ничего не скрипит, не гремит. Пластик конечно мог бы быть и помягче, но глядя на ценник понимаешь — нормально. Сиденья очень удобны. Приятная боковая поддержка. Сзади конечно троим взрослым тесновато. Но господа! Имейте совесть. Это ведь «C» класс! Багажник заслуживает оценки 4. Он вполне вместительный, НО петли крышки конечно же портят впечатление.

Немного расстраивает бюджетный вариант рестайлинга задних фонарей. Я конечно понимаю что переделывать железную крышку багажника — дорого. Но это вставки из белых катафотов внизу на темных машинах — как бельмо в глазу. Именно поэтому она у нас банально серебристая. Кстати рестайлинг американской короллы, все таки затронул эту самую крышку багажника. Фонари там Уже. Опять таки вопрос к маркетологам — вам правда дешевле штамповать разные металлические детали, для разных рынков???

Менеджеры утверждают что дорожный просвет один из самых больших в классе. Поверим им на слово. Конечно же в сравнение с моим крузаком вериться в это с трудом. Поэтому следующая машины для жены — без вариантов паркетник. Убежден, что раскручивтаь два колеса об дорогу — это неправильно:)

Всем удачи на дорогах!

Что такое Двигателя VVT-i

Эта система обеспечивает оптимальный момент впуска в каждом цилиндре для данных конкретных условий работы двигателя. VVT-i практически устраняет традиционный компромисс между большим крутящим моментом на низких оборотах и большой мощностью на высоких. Также VVT-i обеспечивает большую экономию топлива и настолько эффективно снижает выбросы вредных продуктов сгорания, что отпадает необходимость в системе рециркуляции выхлопных газов.

Двигатели VVT-i устанавливаются на всех современных автомобилях Toyota. Аналогичные системы разрабатываются и применяются рядом других производителей (например, система VTEC от Honda Motors). Система VVT-i разработки Toyota заменяет предыдущую систему VVT (2-ступенчатая система управления с гидравлическим приводом), используемую с 1991 г. на 20-клапанных двигателях 4A-GE. VVT-i используется с 1996 г. и управляет моментом открытия и закрытия впускных клапанов путем изменения передачи между приводом распредвала (ремнем, шестерней или цепью) и собственно распредвалом. Для управления положением распредвала используется гидравлический привод (двигательное масло под давлением).

В 1998 г. появился Dual («двойной») VVT-i, управляющий и впускными, и выпускными клапанами (впервые устанавливался на двигателе 3S-GE на RS200 Altezza). Также двойной VVT-i используется на новых V-образных двигателях Toyota, например, на 3,5-литровом V6 2GR-FE. Такой двигатель устанавливается на Avalon, RAV4 и Camry в Европе и Америке, на Aurion в Австралии и на различных моделях в Японии, в т. ч. Estima. Двойной VVT-i будет использоваться в будущих двигателях Toyota, в том числе новом 4-цилиндровом двигателе для нового поколения Corolla. Кроме того, двойной VVT-i используется в двигателе D-4S 2GR-FSE на Lexus GS450h.

За счет изменения момента открытия клапанов пуск и стоп двигателя практически незаметны, т. к. компрессия минимальна, а катализатор очень быстро нагревается до рабочей температуры, что резко снижает вредные выбросы в атмосферу. VVTL-i (расшифровывается как Variable Valve Timing and Lift with intelligence) Основанная на VVT-i, система VVTL-i использует распредвал, обеспечивающий также регулирование величины открытия каждого клапана при работе двигателя на высоких оборотах. Это позволяет обеспечить не только более высокие обороты и большую мощность двигателя, но и оптимальный момент открытия каждого клапана, что приводит к экономии топлива.

Система разработана при сотрудничестве с компанией Yamaha. Двигатели VVTL-i устанавливаются на современных спортивных автомобилях Toyota, таких как Celica 190 (GTS). В 1998 г. Toyota начала предлагать новую технологию VVTL-i для двухраспредвального 16-клапанного двигателя 2ZZ-GE (один распредвал управляет впускными, а другой выпускными клапанами). На каждом распредвале имеется по два кулачка на цилиндр: один для низких оборотов, а другой для высоких (с большим открытием). На каждом цилиндре – два впускных и два выпускных клапана, и каждая пара клапанов приводится в движение одним качающимся рычагом, на который воздействует кулачок распредвала. На каждом рычаге есть подпружиненный скользящий толкатель (пружина позволяет толкателю свободно скользить по «высокооборотному» кулачку, не воздействуя при этом на клапаны). Когда частота вращения вала двигателя ниже 6000 об./м, на качающийся рычаг воздействует «низкооборотный кулачок» через обычный роликовый толкатель (см. рис.). Когда же частота превышает 6000 об./м, компьютер управления двигателем открывает клапан, и давление масла сдвигает шпильку под каждым скользящим толкателем. Шпилька подпирает скользящий толкатель, в результате чего он уже не движется свободно на своей пружине, а начинает передавать качающемуся рычагу воздействие от «высокооборотного» кулачка, и клапаны открываются больше и на большее время.

Toyota Variable Valve Timing. VVT-i (gen.IV)

Eugenio,77
[email protected]
© Toyota-Club.Net
Jan 2016

Toyota Variable Valve Timing. Эволюция

Схема условного 4-го поколения — цепной привод ГРМ на оба распредвала, механизм изменения фаз с лопастным ротором на звездочке впускного распредвала. Применялась на двигателях серий NZ, AZ, ZZ, SZ, KR, 1GR-FE тип’04.

Система VVT-i (Variable Valve Timing intelligent) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала впускных клапанов относительно звездочки привода в диапазоне 40-60° (по углу поворота коленвала).

Привод ГРМ (серия AZ). 1 — управляющий клапан VVT-i, 2 — датчик положения распредвала, 3 — датчик температуры охлаждающей жидкости, 4 — датчик положения коленвала, 5 — привод VVT.

Привод VVT

На впускном распредвалу установлен привод VVT с лопастным ротором. При заглушенном двигателе фиксатор удерживает распредвал в положении максимальной задержки для обеспечения нормального запуска.

В некоторых модификациях может использоваться вспомогательная пружина, которая прикладывает момент в направлении опережения для возврата ротора и надежного срабатывания фиксатора после выключения двигателя.

Привод VVT-i. 1 — корпус, 2 — фиксатор, 3 — ротор, 4 — распредвал. a — при остановке, b — в работе.

Блок управления посредством э/м клапана контролирует подачу масла в полости опережения и задержки привода VVT, основываясь на сигналах датчиков положения распредвалов. На заглушенном двигателе золотник перемещается пружиной таким образом, чтобы обеспечить максимальный угол задержки.
1 — э/м клапан. a — пружина, b — втулка, c — золотник, d — к приводу (полость опережения), e — к приводу (полость задержки), f — сброс, g — давление масла, h — обмотка, j — плунжер.

Опережение Задержка Удержание
Управляющий сигнал от блока к клапану VVT (широтно-импульсная модуляция)

Опережение. Э/м клапан по сигналу ECM переключается в позицию опережения и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости опережения, проворачивая его вместе с распредвалом в направлении опережения.

Задержка. Э/м клапан по сигналу ECM переключается в позицию задержки и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости задержки, проворачивая его вместе с распредвалом в направлении задержки.

Удержание. ECM рассчитывает необходимый угол опережения в соответствии с условиями движения, и после установки заданного положения переключает управляющий клапан в нейтральную позицию до следующего изменения внешних условий.

Режимы работы


Фазы газораспределения (2AZ-FE)

Большой обзор двигателей Toyota

Более 2000 руководств
по ремонту и техническому обслуживанию
автомобилей различных марок

 

TOYOTA-LEXUS 1305038010 GEAR ASSY, CAMSHAFT TIMING — цена и аналоги:

 

Информация для покупателей

Просим вас быть бдительными при переводе денежных средств третьим лицам.

Фильтр

  • срок доставки
  • Доступное количество
  • Сбросить

Представленные на сайте цены товара TOYOTA-LEXUS 1305038010 GEAR ASSY, CAMSHAFT TIMING указаны с учетом доставки до пункта самовывоза в городе Новокузнецк.

Для уточнения стоимости доставки по России Вы можете обратиться к менеджеру нашего интернет-магазина по указанным контактам. Для самостоятельного рассчета доставки воспользуйтесь нашим онлайн-калькулятором рассчета доставки. 

 

 

 

Чтобы купить TOYOTA-LEXUS 1305038010:

1. Определитесь со сроками, выберите необходимое количество и добавьте TOYOTA-LEXUS 1305038010 в корзину.

2. Оформите заказ, следуя подсказкам в корзине.

3. Оплатите заказ, выбрав удобный способ оплаты. Напоминаем, что мы работаем только по 100% предоплате.

4. Если товар в наличии — Вы можете буквально сразу же получить его в нашем пункте самовывоза.

Каждая запчасть имеет свою применимость к определённым маркам автомобиля. Обязательно перед оформлением заказа убедитесь, что TOYOTA-LEXUS 1305038010 GEAR ASSY, CAMSHAFT TIMING подходит к Вашему автомобилю.

Информация по заменителям (дубликатам, заменам, аналогам) имеет исключительно справочный характер и не гарантирует совместимость с вашим автомобилем! Если Вы не уверены в том, что выбранная Вами деталь подходит к Вашему транспортному средству — обратитесь за помощью к менеджеру по подбору запчастей.

Размещённая на сайте информация (описание, технические характеристики, а так же фотографии) приведена для ознакомления и не является публичной офертой. Не может служить основанием для предъявления претензий в случае изменения характеристик, комплектности и внешнего вида товара производителем без уведомления.

Технология VVT-i — Авто-потроха: что у машинок внутри?

Раскрыть…

VVT-iW (Variable Valve Timing intelligent Wide) представляет собой цепной привод ГРМ на оба распредвала и механизм изменения фаз с лопастными роторами на звездочках впускного и выпускного распредвалов и расширенным диапазоном регулировки на впуске. Применялась на двигателях 6AR-FSE, 8AR-FTS, 8NR-FTS, 2GR-FKS. Позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя путём поворота распредвала впускных клапанов относительно звездочки привода в диапазоне 75-80° по углу поворота коленвала.

Расширенный, по сравнению с обычным VVT, диапазон приходится главным образом на угол задержки. На втором распредвалу в этой схеме установлен привод VVT-i.

Система VVT-i (Variable Valve Timing intelligent) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала выпускных клапанов относительно звездочки привода в диапазоне 50-55° (по углу поворота коленвала).

Совместная работа VVT-iW на впуске и VVT-i на выпуске обеспечивает следующий эффект:

  1. Режим пуска (EX — опережение, IN — промежуточное положение). Для обеспечения надежного запуска используются два независимых фиксатора, удерживающих ротор в промежуточном положении.
  2. Режим частичной нагрузки (EX — задержка, IN — задержка). Обеспечивается возможность работы двигателя по циклу Миллера/Аткинсона, при этом уменьшаются насосные потери и улучшается экономичность.
  3. Режим между средней и высокой нагрузкой (EX — задержка, IN — опережение). Обеспечивается режим т.н. внутренней рециркуляции отработавших газов и улучшаются условия выпуска.

На впускном распредвалу установлен привод VVT-iW с лопастным ротором. Два фиксатора удерживают ротор в промежуточном положении. Вспомогательная пружина прикладывает момент в направлении опережения для возврата ротора в промежуточное положение и надежного срабатывания фиксаторов. Это обеспечивает нормальный пуск двигателя, заглушенного в положении задержки.

Привод VVT-iW. 1 — центральный болт, 2 — вспомогательная пружина, 3 — передняя крышка, 4 — ротор, 5 — фиксатор, 6 — корпус (звездочка), 7 — задняя крышка, 8 — впускной распредвал. a — стопорный паз.

Управляющий клапан встроен в центральный болт крепления привода (звездочки) к распредвалу. При этом управляющий масляный канал имеет минимальную длину, обеспечивая максимальную скорость отклика и срабатывания при низких температурах. Управляющий клапан приводится штоком плунжера э/м клапана VVT-iW.

a — сброс, b — к полости опережения, c — к полости задержки, d — моторное масло, e — к фиксатору.

Конструкция клапана позволяет независимо управлять двумя фиксаторами, по отдельности для контуров опережения и задержки. Это позвоялет фиксировать ротор в промежуточном положении управления VVT-iW.

1 — внешний штифт, 2 — внутренний штифт. a — фиксатор задействован, b — фиксатор свободен, c — масло, d — стопорный паз.

Электромагнитный клапан VVT-iW установлен в крышке цепи привода ГРМ и соединен непосредственно с приводом изменения фаз впускного распредвала.

1 — электромагнитный клапан VVT-iW. a — обмотка, b — плунжер, c — шток.

При опережении электромагнитный клапан по сигналу ECM переключается в позицию опережения и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости опережения, проворачивая его вместе с распредвалом в направлении опережения.

1 — ротор, 2 — от ECM, 3 — электромагнитный клапан VVT-iW. a — направление вращения, b — полость задержки, c — полость опережения, d — к полости опережения, e — от полости задержки, f — сброс, g — давление масла.

При задержке электромагнитный клапан по сигналу ECM переключается в позицию задержки и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости задержки, проворачивая его вместе с распредвалом в направлении задержки.

1 — ротор, 2 — от ECM, 3 — электромагнитный клапан VVT-iW. a — направление вращения, b — полость задержки, c — полость опережения, d — к полости опережения, e — от полости задержки, f — сброс, g — давление масла.

При удержании ECM рассчитывает необходимый угол опережения в соответствии с условиями движения. После установки заданного положения ECM переключает управляющий клапан в нейтральную позицию до следующего изменения внешних условий.

На выпускном распредвалу установлен привод VVT-i лопастным ротором (традиционного или нового образца — с управляющим клапаном, встроенным в центральный болт). При заглушенном двигателе фиксатор удерживает распредвал в положении максимального опережения для обеспечения нормального запуска.

Вспомогательная пружина прикладывает момент в направлении опережения для возврата ротора и надежного срабатывания фиксатора после выключения двигателя.

Привод VVT-i (AR). 1 — вспомогательная пружина, 2 — корпус, 3 — ротор, 4 — фиксатор, 5 — звездочка, 6 — распредвал. a — при остановке, b — в работе.

Привод VVT-i (GR). 1 — центральный болт, 2 — передняя крышка, 3- корпус, 4 — ротор, 5 — задняя крышка, 6 — впускной распредвал.

Блок управления посредством электромагнитного клапана контролирует подачу масла в полости опережения и задержки привода VVT, основываясь на сигналах датчиков положения распредвалов. На заглушенном двигателе золотник перемещается пружиной таким образом, чтобы обеспечить максимальный угол опережения.

Клапан VVT (AR). 1 — электромагнитный клапан. a — пружина, b — втулка, c — золотник, d — к приводу (полость опережения), e — к приводу (полость задержки), f — сброс, g — давление масла.

Клапан VVT (GR). 1 — электромагнитный клапан. a — слив, b — к приводу (полость опережения), c — к приводу (полость задержки), d — давление масла.

При опережении электромагнитный клапан по сигналу ECM переключается в позицию опережения и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости опережения, проворачивая его вместе с распредвалом в направлении опережения.

1 — ротор, 2 — электромагнитный клапан VVT-i, 3 — от ECM. a — направление вращения, b — давление масла, c — сброс.

1 — ротор, 2 — от ECM, 3 — электромагнитный клапан VVT-i. a — направление вращения, b — полость задержки, c — полость опережения, d — к полости опережения, e — от полости задержки, f — слив, g — давление масла.

При задержке электромагнитный клапан по сигналу ECM переключается в позицию задержки и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости задержки, проворачивая его вместе с распредвалом в направлении задержки.

1 — ротор, 2 — электромагнитный клапан VVT-i, 3 — от ECM. a — направление вращения, b — давление масла, c — сброс.

1 — ротор, 2 — от ECM, 3 — электромагнитный клапан VVT-i. a — направление вращения, b — полость задержки, c — полость опережения, d — от полости опережения, e — к полости задержки, f — слив, g — давление масла.

При удержании ECM рассчитывает необходимый угол опережения в соответствии с условиями движения и после установки заданного положения переключает управляющий клапан в нейтральную позицию до следующего изменения внешних условий.

[свернуть]

Что такое двигатель VVT-i? | Новости

VVT-i — это сокращение от Variable Valve Timing-Intelligence, что является названием Toyota для технологии регулируемого клапана, которую она использует в большинстве своих автомобилей.

Большинство производителей используют технологию изменения фаз газораспределения, и, хотя детали различаются, все системы вносят небольшие коррективы в то, когда впускные клапаны двигателя открываются и закрываются, чтобы подавать топливно-воздушную смесь в двигатель, в зависимости от того, как движется автомобиль. Это сделано для максимальной производительности и снижения выбросов.Некоторые системы регулируемых клапанов также воздействуют на выпускные клапаны, которые открываются, выпуская топливно-воздушную смесь из двигателя.

Связано: Горит ли индикатор проверки двигателя? 5 наиболее распространенных причин

При изменении фаз газораспределения клапаны открываются на более короткие периоды во время небольшого ускорения или холостого хода, поэтому в двигатель поступает меньше воздушно-топливной смеси, что способствует снижению выбросов. При резком ускорении клапаны открываются дольше, поэтому в двигатель поступает больше топливовоздушной смеси и увеличивается мощность.

В Toyota VVT-i электронный блок управления — «мозг», который управляет работой двигателя — постоянно вычисляет наилучшее время для открытия и закрытия клапанов и активирует клапан давления масла, чтобы изменить время, изменяя скорость распределительного вала.

В некоторых двигателях Toyota, таких как 3,5-литровый V-6 внедорожника Highlander, используются электродвигатели для изменения фаз газораспределения впускных клапанов, и Toyota маркирует их как VVT-iE (для электромобилей). На таких двигателях, как 3,5-литровый и 2,5-литровый, используемые в седане Camry, выпускные клапаны также имеют регулируемые фазы газораспределения, и они называются Dual VVT-i.Toyota заявляет, что за счет оптимизации фаз газораспределения в зависимости от условий движения VVT-i увеличивает мощность, улучшает экономию топлива и снижает выбросы.

Alfa Romeo была первым производителем, предложившим систему регулирования фаз газораспределения в 1980 году, за ней последовали и другие производители, в том числе Honda в 1989 году со своей системой VTEC. Toyota анонсировала VVT-i в 1995 году, и он был представлен в США на модернизированном Lexus LS 400 1998 года. Celica 2000 модельного года была первой моделью Toyota в США с ним.

Все текущие модели Toyota в U.S. используют двигатели VVT-i, за исключением автомобиля Mirai на топливных элементах, купе 86 и спортивного автомобиля Supra. 86 использует двигатель Subaru, а Supra — двигатель BMW, и оба имеют регулируемые фазы газораспределения.

Ещё на Cars.com:

Редакционный отдел Cars.com — ваш источник автомобильных новостей и обзоров. В соответствии с давней политикой этики Cars.com редакторы и рецензенты не принимают подарки или бесплатные поездки от автопроизводителей. Редакция не зависит от Cars.com, отделы рекламы, продаж и спонсируемого контента.

Toyota разрабатывает новую технологию двигателя VVT-i

Повышенная экономия топлива и снижение выбросов NOx и углеводородов

Перекрытие клапанов (момент, когда впускные и выпускные клапаны открыты), создаваемое непрерывным широким управлением синхронизацией впускных клапанов в зависимости от нагрузки и скорости двигателя, увеличивает экономию топлива и снижает выбросы NOx и углеводородов.

В обычном бензиновом двигателе дроссельная заслонка регулирует впуск воздуха, когда педаль акселератора нажата не полностью (движение с частичной нагрузкой).Это создает вакуумное давление в цилиндре, вызывая дополнительную нагрузку на поршень (насосные потери).

Напротив, двигатель с VVT-i увеличивает время открытия впускного клапана во время движения с частичной нагрузкой, увеличивает перекрытие клапанов и втягивает частичный выхлопной газ обратно в цилиндр. Это дает три результата: (1) пониженное давление внутри цилиндра снижается, чтобы уменьшить потери на впуске и увеличить экономию топлива; (2) температура горения понижается, чтобы уменьшить выбросы NOx; и (3) несгоревший газ возвращается в камеру сгорания для повторного сжигания, восстанавливая углеводороды.

Клапаны не перекрываются для стабилизации сгорания, когда двигатель работает на холостом ходу, а частота вращения на холостом ходу снижается для улучшения экономии топлива.

Увеличенный крутящий момент и мощность

В условиях движения с высокой нагрузкой, требующих высокого крутящего момента и мощности, синхронизация впускных клапанов регулируется оптимально (непрерывно и широко) в зависимости от частоты вращения двигателя. Эффект инерции всасывания полностью используется для увеличения всасываемого воздуха, таким образом увеличивая крутящий момент и мощность.

Чтобы увеличить количество всасываемого воздуха, время закрытия впускного клапана должно определяться с учетом эффекта инерции впуска и возврата всасываемого воздуха, вызванного поднимающимся поршнем.Оптимальные изменения времени в зависимости от оборотов двигателя.

Двигатель VVT-i увеличивает крутящий момент на низких и средних оборотах за счет предварительного управления закрытием впускных клапанов в диапазонах низких и средних оборотов. При увеличении частоты вращения двигателя время закрытия впускного клапана замедляется, чтобы увеличить мощность.

Toyota Variable Valve Timing. VVT-i (поколение IV)

Эухенио, 77
[email protected]
© Toyota-Club.Нетто
Янв 2016

Toyota Variable Valve Timing. Evolution

Условная 4-го поколения. тип — цепной привод ГРМ для обоих распредвалов, механизм изменения фаз газораспределения с лопастным ротором в звездочке впускного распредвала. Применяется для двигателей: серий NZ, AZ, ZZ, SZ, KR, 1GR-FE тип’04.

Система VVT-i (Variable Valve Timing — интеллектуальная) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается поворотом распредвала впускных клапанов относительно ведущей звездочки в диапазоне 40-60 ° (угол поворота коленчатого вала).

Привод ГРМ (серия AZ). 1 — управляющий соленоид VVT-i, 2 — датчик положения распредвала, 3 — датчик температуры воды, 4 — датчик положения коленчатого вала, 5 — исполнительный механизм VVT-i.

Привод изменения фаз газораспределения

Привод VVT с лопастным ротором устанавливается на впускной распредвал. Когда двигатель остановлен, стопорный штифт удерживает ротор в максимально замедленном положении для нормального запуска.

Для некоторых версий используется вспомогательная пружина, которая прикладывает крутящий момент в направлении движения вперед для возврата ротора и надежной работы блокировки после выключения двигателя.

Привод VVT-i. 1 — корпус, 2 — стопорный штифт, 3 — ротор, 4 — распредвал. а — стоп, б — работа.

ECM управляет потоком масла для опережения и замедления камер с помощью соленоида на основе сигналов датчиков положения распределительного вала.Когда двигатель остановлен, золотник клапана приводится в движение пружиной для обеспечения максимального угла запаздывания.
a — пружина, b — втулка, c — золотник клапана, d — к ​​приводу (камера опережения), e — к приводу (камера замедления), f — слив, g — давление масла, h — змеевик, j — плунжер.

Управляющий сигнал от ECM к соленоиду VVT (PWM)

Advance . ЕСМ переключает соленоид в положение опережения и переключает золотник регулирующего клапана.Моторное масло под давлением подается в ротор в опережающей камере, поворачивая его вместе с распределительным валом в направлении опережения.

Задержка . ЕСМ переключает соленоид в положение задержки и переключает золотник регулирующего клапана. Моторное масло под давлением подается к ротору в камере торможения, поворачивая его вместе с распределительным валом в направлении торможения.

Удерживать .ЕСМ рассчитывает целевой угол в соответствии с условиями движения и после достижения заданного положения переключает регулирующий клапан в нейтральное положение до следующего изменения внешних условий.

Режимы работы


Обзор двигателей Toyota

Toyota Variable Valve Timing. VVT-iW

Эухенио, 77
mail @ toyota-club.net
© Toyota-Club.Net
Янв 2016

Toyota Variable Valve Timing. Evolution

Тип VVT-iW — привод ГРМ от одинарной цепи для обоих распредвалов, механизм изменения фаз газораспределения с лопастным ротором в звездочках впускного и выпускного распредвалов, расширенный диапазон регулировки на впуске. Применяется для двигателей: 6AR-FSE, 8AR-FTS, 8NR-FTS, 2GR-FKS …

Система VVT-iW (Variable Valve Timing — интеллектуальная широкая) позволяет плавно изменять фазы газораспределения в зависимости от работы двигателя условия.Это достигается поворотом впускного распредвала относительно ведущей звездочки в диапазоне 75-80 ° (угол поворота коленчатого вала).

Увеличенный диапазон, по сравнению с обычным VVT, идет в основном в сторону запаздывания. На втором распредвале в этой схеме установлен традиционный привод VVT-i.


Система VVT-i (Variable Valve Timing — интеллектуальная) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя.Это достигается поворотом распредвала выпускных клапанов относительно ведущей звездочки в диапазоне 50-55 ° (угол поворота коленчатого вала).

Совместное действие впускного VVT-iW и выпускного VVT-i дает следующий эффект.
1. Стартовый (EX — продвинутый, IN — средний). Для надежного пуска используются два независимых стопорных штифта, удерживающих ротор в промежуточном положении.
2. Частичная нагрузка (EX — rertard, IN — retard). Позволяет двигателю работать по циклу Миллера / Аткинсона, уменьшая насосные потери и улучшая топливную экономичность.Подробнее — см. Здесь .
3. От средней до высокой нагрузки (EX — замедленная, IN — опережающая). Обеспечивает так называемую внутреннюю рециркуляцию выхлопных газов и улучшенный выхлоп.

Привод VVT-iW

Привод VVT-iW с лопастным ротором устанавливается на впускной распредвал. Два стопорных штифта удерживают ротор в промежуточном положении. Вспомогательный момент пружины, прикладываемый в направлении движения вперед, для возврата ротора в промежуточное положение для надежной блокировки работы.Обеспечивает нормальный запуск двигателя, остановленный в положении торможения.

Привод VVT-iW. 1 — центральный болт, 2 — вспомогательная пружина, 3 — передняя крышка, 4 — ротор, 5 — стопорный штифт, 6 — корпус (звездочка), 7 — задняя крышка, 8 — распредвал впускных клапанов. а — стопорный паз.

Масляный регулирующий клапан встроен в центральный болт. При этом контрольный масляный канал имеет минимальную длину, чтобы обеспечить максимальную скорость отклика и нормальный отклик при низких температурах.Регулирующий клапан приводится в действие плунжером соленоида VVT-iW.
а — сброс, б — в камеру опережения, в — в камеру торможения, г — моторное масло, д — в стопорный штифт.

Конструкция клапана позволяет независимо управлять двумя стопорными штифтами отдельно для контуров опережения и замедления. Это позволяет зафиксировать ротор в промежуточном положении управления VVT-iW.
1 — внешний штифт, 2 — внутренний штифт.а — зацеплено, б — свободно, в — масло, г — стопорная канавка.

Соленоид VVT-iW установлен на крышке цепи привода ГРМ и подключен непосредственно к исполнительному механизму регулируемого клапана.
1 — Соленоид VVT-iW. а — катушка, б — плунжер, в — шток.

Аванс . ЕСМ переключает соленоид в положение опережения и переключает золотник регулирующего клапана. Моторное масло под давлением подается в ротор в опережающей камере, поворачивая его вместе с распределительным валом в направлении опережения.
1 — ротор, 2 — от ЭСУД, 3 — соленоид VVT-iW. а — направление вращения, б — камера торможения, в — камера опережения, г — в камеру опережения, д — от камеры торможения, е — слив, г — давление масла.

Задержка . ЕСМ переключает соленоид в положение задержки и переключает золотник регулирующего клапана. Моторное масло под давлением подается к ротору в камере торможения, поворачивая его вместе с распределительным валом в направлении торможения.
1 — ротор, 2 — от ЭСУД, 3 — соленоид VVT-iW. а — направление вращения, б — камера торможения, в — камера опережения, г — в камеру опережения, д — от камеры торможения, е — слив, г — давление масла.

Удерживать . ЕСМ рассчитывает целевой угол в соответствии с условиями движения и после достижения заданного положения переключает регулирующий клапан в нейтральное положение до следующего изменения внешних условий.

Привод VVT-i

Привод VVT-i с лопастным ротором устанавливается на распредвал выпускных клапанов (традиционный или новый — с масляным регулирующим клапаном, встроенным в центральный болт). Когда двигатель остановлен, стопорный штифт удерживает ротор в положении максимального опережения для нормального запуска.

Вспомогательная пружина прикладывает крутящий момент в направлении движения вперед для возврата ротора и надежной работы блокировки после выключения двигателя.

Привод VVT-i (AR).1 — вспомогательная пружина, 2 — корпус, 3 — ротор, 4 — стопорный штифт, 5 — звездочка, 6 — распредвал. а — стоп, б — работа.

Привод VVT-i (GR). 1 — центральный болт, 2 — передняя крышка, 3 — корпус, 4 — ротор, 5 — задняя крышка, 6 — выпускной распредвал.

ECM управляет потоком масла для опережения и замедления камер с помощью соленоида на основе сигналов датчиков положения распределительного вала. Когда двигатель остановлен, золотник клапана приводится в движение пружиной для обеспечения максимального угла опережения.
Клапан ВВТ (АР). 1 — соленоид. a — пружина, b — втулка, c — золотник клапана, d — к ​​приводу (камера опережения), e — к приводу (камера замедления), f — слив, g — давление масла.

Клапан VVT (GR). 1 — соленоид. а — слив, б — к приводу (камера опережения), в — к приводу (камера торможения), г — давление масла.

Аванс .ЕСМ переключает соленоид в положение опережения и переключает золотник регулирующего клапана. Моторное масло под давлением подается в ротор в опережающей камере, поворачивая его вместе с распределительным валом в направлении опережения.
1 — ротор, 2 — соленоид VVT-i, 3 — от ECM. а — направление вращения, б — давление масла, в — слив.

1 — ротор, 2 — ECM, 3 — соленоид VVT-i, 3 — от ECM.а — направление вращения, б — камера торможения, в — камера опережения, г — в камеру опережения, д — от камеры торможения, е — слив, г — давление масла.

Задержка . ЕСМ переключает соленоид в положение задержки и переключает золотник регулирующего клапана. Моторное масло под давлением подается к ротору в камере торможения, поворачивая его вместе с распределительным валом в направлении торможения.
1 — ротор, 2 — соленоид VVT-i, 3 — от ECM.а — направление вращения, б — давление масла, в — слив.

1 — ротор, 2 — от ЭБУ, 3 — соленоид VVT-i. а — направление вращения, б — камера торможения, в — камера опережения, г — от камеры опережения, д — в камеру торможения, е — слив, г — давление масла.

Удерживать . ЕСМ рассчитывает целевой угол в соответствии с условиями движения и после достижения заданного положения переключает регулирующий клапан в нейтральное положение до следующего изменения внешних условий.



Обзор двигателей Toyota

(VVT) Регулировка фаз газораспределения — как это работает

(VVT) Регулируемое время клапана — Как это работает — Как оно может выйти из строя

(VVT) Регулируемое время клапана — это 2-ступенчатая система фазирования кулачка с гидравлическим управлением.

Итак, по мере того, как технологии двигателей совершенствуются и становятся менее дорогими; (VVT) система изменения фаз газораспределения, продолжает улучшать производительность и экономичность.
В настоящее время производители внедрили различные (VVT) системы регулирования фаз газораспределения, конструктивные подходы и технологии. Самое главное контролировать фазы газораспределения и как долго; впускной и выпускной клапаны остаются открытыми.

Система изменения фаз газораспределения (VVT) использует давление моторного масла для изменения положения впускного распредвала.Как следствие, оптимизация фаз впускных клапанов для условий эксплуатации. Примечание: учитывается только потребление.

Также, в зависимости от потребностей двигателя, система может вращать распределительный вал; в опережающем или запаздывающем направлении. Регулировка времени перекрытия между закрытием выпускного клапана и открытием впускного клапана; приводит к повышению эффективности двигателя.

(VVT) Технология изменения фаз газораспределения, контролирует три ключевые характеристики; впускных и выпускных клапанов:

  • Выбор фаз газораспределения — точки движения поршня, в которых клапаны открываются и закрываются.
  • Продолжительность — Как долго клапаны остаются открытыми.
  • Высота подъема клапана — насколько физически открываются клапаны (их отверстие для открытия).

Для этого используются различные датчики, например датчики расхода воздуха и положения распределительного вала; передать информацию в автомобиль (ECU). Наконец, с помощью различных механизмов для управления вышеупомянутыми характеристиками клапана.

Итак, как работает (VVT) регулируемый клапан синхронизации
(VVT) изменение фаз газораспределения, изменяет время подъема клапана; для повышения производительности и экономичности в определенных дорожных ситуациях.
(VVT) Зубчатый механизм регулируемого клапана

Визуализируйте это как полую закрытую шестерню внутри; где две звездообразные шестерни размещены одна внутри другой. Наружная шестерня — это соединение шестерни распределительного вала; к ремню или цепи, которая его приводит. Внутренняя шестерня соединяется с самим распредвалом. Обычно они сцеплены друг с другом, зубчатое колесо против зубца и вращаются с одинаковой скоростью.

Таким образом, при введении давления масла шестерни можно разъединить. Следовательно, меняют свои скорости относительно друг друга на мгновение.Наконец, это увеличивает или уменьшает частоту вращения распределительного вала; относительно времени привода двигателя. Кроме того, это, в свою очередь, изменяет продолжительность подъема клапана для управления впуском и выпуском.

(VVT) Регулируемая синхронизация клапана в основном бывает двух типов:
  • Single — (VVT) — Постоянно изменяет синхронизацию впускного распредвала.
  • Dual — (VVT) — Постоянное изменение фаз газораспределения впускного и выпускного распредвала.

Итак, двойная (VVT) система помогает двигателю «вдыхать» и «выдыхать» более эффективно.Следовательно, путем непрерывной регулировки фаз впускных и выпускных клапанов; для повышения мощности, топливной экономичности и выбросов выхлопных газов.

(VVT-i) — Регулировка фаз газораспределения

Кроме того, двойной (VVT) помогает обеспечить:
  • Более высокая топливная экономичность на всех оборотах двигателя.
  • Более высокий крутящий момент на низких оборотах с меньшей вероятностью «детонации» двигателя, снижающего мощность.
  • Превосходная мощность на высоких оборотах двигателя, без лишнего шума и вибрации.
  • Пониженные выбросы на всех оборотах двигателя.

Кроме того, двойной (VVT) помогает двигателю обеспечить необходимую мощность и топливную экономичность; при сохранении оптимального качества выбросов.

Итак, в чем разница между одиночным и дуэльным (VVT)
  • Технология Single (VVT), регулирует синхронизацию только впускных клапанов.
  • Dual (VVT), регулирует как впускные, так и выпускные клапаны (двойного действия).

В обоих случаях распределительный вал имеет два профиля для впускных клапанов:

  • Экономичный профиль (ниже 6000 об / мин).
  • Профиль производительности (выше 6000 об / мин).

Следовательно, когда (VVT) «срабатывает», давление масла оказывается на приводе; который слегка сдвигает распределительный вал, включая настройку «производительность».

(VVT) Performance Setting

Итак, с двойным (VVT) — регулируемым временем клапана происходит то же самое; разница на этот раз в том, что выпускные клапаны активированы. Теперь распределительный вал имеет по два профиля для впуска и выпуска. Двойной (VVT) также минимизирует давление сжатия при запуске / остановке; регулируя последовательность перекрытия между впускными и выпускными клапанами.

Возможность одновременного открытия как впускных, так и выпускных клапанов; также обеспечивает максимальную очистку от заряда внутри цилиндра. Обеспечение очень высокой (RPM) и огромной мощности; от того же двигателя, который может похвастаться впечатляющим крутящим моментом на низких оборотах.

Преимущества, которые имели (VVT) с регулируемой синхронизацией клапана, включают:
  • Повышенная производительность и одновременно экономичность.
  • Более быстрый нагрев каталитического нейтрализатора за счет улучшенного контроля выхлопных газов.
  • Повышенная эффективность в широком диапазоне рабочих скоростей двигателя.
  • Улучшены, синхронизация двигателя.

Коды общих ошибок двигателя Чтение кодов неисправностей двигателя

Два общих кода двигателя: P0011 и P0021 (датчик положения распределительного вала «ряд 1» и датчик положения распределительного вала «ряд 2» соответственно).

Вот некоторые из общих областей, в которых можно искать проблемы:
  • ГРМ
  • Масляный регулирующий клапан
  • Сетка фильтра масляного клапана
  • Распредвал / шестерни
  • Разъемы и провода электрические
  • (PCM) или (ECM)

Следовательно, грязное масло может привести к накоплению осадка; которые могут засорить масляные каналы в кулачке, что приведет к выходу кулачка из строя.Таким образом, отсутствие регулярного технического обслуживания является большой проблемой для систем (VVT).

Замена масла сейчас важнее, чем когда-либо прежде Отсутствие регулярной замены масла

Наиболее важно то, что соленоид (VVT) нуждается в чистом моторном масле для правильной работы. Итак, что происходит, когда моторное масло забивается мусором, грязью или другими инородными частицами? Он имеет тенденцию засорять проход от соленоида до цепи (VVT) и шестерни.

Следовательно, отсутствие регулярной замены масла может привести к повреждению соленоида (VVT), цепи (VVT) и зубчатой ​​передачи.Итак, чтобы избежать этой ситуации, не забудьте заменить моторное масло; в соответствии с рекомендациями производителя автомобиля. Низкий уровень масла также может вызвать проблемы с соленоидом (VVT) и другими компонентами системы газораспределения.

с (VVT) с регулируемой синхронизацией клапана (у вас больше нет клапана (EGR)) Клапан рециркуляции выхлопных газов (EGR)

Итак, системы (VVT) сделали клапаны рециркуляции выхлопных газов (EGR) устаревшими. Клапаны (рециркуляции отработавших газов) возвращают во впускной коллектор смог, вызывающий оксиды азота.Следовательно, система (VVT) контролирует синхронизацию, чтобы оставить инертный газ в камере для следующего цикла сгорания. Кроме того, контроль температуры горения и образования оксидов азота.

Заключение

Итак, большинство систем (VVT) и их компонентов зависят от постоянной циркуляции моторного масла. Наконец, если есть какие-либо проблемы с потоком масла, многие детали могут выйти из строя.

Поделитесь, пожалуйста, машинным порталом Дэнни.com Новости

Также упоминается как привод с изменяемой фазой газораспределения или контроллер VVT

Распредвал выпускных клапанов приводится в движение ремнем газораспределительного механизма, а распредвал впускных клапанов приводится в движение шестерней на конце распредвала выпускных клапанов. Шестерня привода распределительного вала впускных клапанов интегрирована с контроллером изменения фаз газораспределения для изменения фаз газораспределения впускного распредвала. Регулятор изменения фаз газораспределения состоит из корпуса, приводимого в действие распредвалом выпускных клапанов, и лопатки, закрепленной на распредвале впускных клапанов. См. Рис.71. Давление масла может подаваться со стороны опережения или запаздывания впускного распределительного вала к контроллеру изменения фаз газораспределения. Это давление масла заставляет контроллер изменения фаз газораспределения вращать впускной распределительный вал и изменять фазы газораспределения. Когда двигатель остановлен, впускной распределительный вал переводится в наиболее замедленное состояние для улучшения устойчивости на низких скоростях. В это время стопорный штифт фиксирует корпус и лопатку внутри контроллера изменения фаз газораспределения. После запуска двигателя стопорный штифт освобождается под давлением масла.

Масляный клапан регулировки фаз газораспределения — это клапан с электрическим управлением, который принимает давление масла от масляного насоса. См. Рис.72. Контроллер ЭСУД использует входные сигналы для частоты вращения коленчатого вала двигателя, объема всасываемого воздуха, положения дроссельной заслонки и температуры охлаждающей жидкости двигателя для определения работы масляного клапана регулирования фаз газораспределения. Контроллер ЭСУД также использует входные сигналы от датчиков изменения фаз газораспределения и датчика положения коленчатого вала для определения фактических фаз газораспределения впускных клапанов. Датчики изменения фаз газораспределения также могут называться датчиками положения распределительного вала.Контроллер ЭСУД управляет масляным клапаном регулировки фаз газораспределения, контролируя положение золотникового клапана. Это определяет, на какой стороне контроллера изменения фаз газораспределения будет применяться давление масла для опережения или замедления фаз газораспределения путем вращения впускного распределительного вала. См. Рис.72. Когда двигатель остановлен, масляный клапан регулирования фаз газораспределения находится в запаздывающем состоянии.

Когда двигатель работает на холостом ходу, фаза фаз газораспределения впускного распредвала устанавливается в стандартное положение или положение удержания для стабилизации холостого хода и повышения экономии топлива.При небольшой нагрузке на двигатель синхронизация фаз газораспределения впускных клапанов остается запаздывающей для обеспечения стабильной работы двигателя. При средней нагрузке двигателя синхронизация фаз газораспределения впускного распредвала улучшается, чтобы обеспечить повышенную производительность, экономию топлива и улучшенный контроль выбросов. При большой нагрузке на двигатель в диапазоне от низких до средних оборотов фаза фаз газораспределения впускного распредвала увеличивается, чтобы обеспечить повышенный крутящий момент. При большой нагрузке на двигатель в диапазоне высоких скоростей фазы газораспределения впускного распредвала задерживаются, чтобы обеспечить улучшенную работу в диапазоне высоких скоростей и лучшую экономию топлива.При низких температурах фазы газораспределения впускных клапанов остаются в стандартном или удерживаемом положении для стабилизации высоких оборотов холостого хода и повышения экономии топлива. Когда двигатель запускается или останавливается, фаза фаз газораспределения впускного распределительного вала устанавливается в положение задержки, чтобы улучшить запуск двигателя. Если проблема существует в системе VVT, диагностический код неисправности (DTC) может храниться в ECM. См. ПРОЦЕДУРУ ТЕСТИРОВАНИЯ в разделе СИСТЕМА САМОДИАГНОСТИКИ в соответствующей статье САМОДИАГНОСТИКА для получения кодов неисправности.

2001 ДВИГАТЕЛЬ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ Теория и работа

Рис.70: Определение компонентов системы регулирования фаз газораспределения (Avalon, Highlander 3.0L V6 и Sienna) Предоставлено TOYOTA MOTOR SALES, USA, INC.

2001 ДВИГАТЕЛЬ ТЕОРИЯ И РАБОТА

Рис. Avalon, Highlander 3.0L V6 и Sienna)

Предоставлено TOYOTA MOTOR SALES, USA, INC.

Рис.71: Определение компонентов контроллера изменения фаз газораспределения (Avalon, Highlander 3.0L V6 и Sienna)

Предоставлено TOYOTA MOTOR SALES, U.S.A., INC.

2001 ДВИГАТЕЛЬ ТЕОРИЯ И ЭКСПЛУАТАЦИЯ

Рис.72: Вид в разрезе типичного масляного клапана регулирования фаз газораспределения (Avalon, Celica, Corolla, ECHO, Highlander, MR2, Prius, RAV4 & Sienna) Предоставлено TOYOTA MOTA ПРОДАЖА, США, ИНК.

Читать здесь: Celica Corolla Echo Highlander L Cyl Mr Prius

Была ли эта статья полезной?

СКОЛЬКО СТОИМОСТЬ ЗАМЕНА ШЕСТЕРНИ VVT И КАК ПРОДЛИТЬ СРОК СЛУЖБЫ КАМФАЗЕРА — HJL Autoparts

Сколько стоит, , замена соленоида vvt, соленоида системы изменения фаз газораспределения или привода изменения фаз газораспределения?
Где я могу заменить шестерню vvt и сколько сколько стоит замена шестерни распредвала vvti?
Что такое шестерня vvti?
Как заменить шестерню распределительного вала?
Где можно купить шестерню vvti cam?

Фазер с регулируемым кулачком в двигателе VVT

Все больше и больше автомобилей оснащаются кулачковыми шестернями VVT для улучшения показателей экономии топлива.
Этот дизайн — одно из заметных прорывов в истории автомобилестроения.
По ссылке ниже вы можете получить дополнительную информацию о функциях редуктора VVT.
Что означает CVVT в автомобилях и симптомы плохого изменения фаз газораспределения VVT?

Изменяя ход подъема клапана, система VVT может обеспечить лучшую производительность.
Электронная технология позволяет подавать необходимое количество масла в двигатель через электромагнитную регулировку фаз газораспределения.

У автопроизводителей есть собственные названия этой технологии.
Ford называет это системой изменения фаз газораспределения, VCT.
VVT-i — это имя, как его называет Toyota.
Также существуют различные конструкции для системы VVT, и наиболее распространенной является тип фазирования кулачка.
С фазированием кулачка, фаза газораспределения может быть изменена во времени путем изменения положения распределительного вала в соответствии с частотой вращения двигателя.
Более современные конструкции даже имеют два распредвала в двигателе.
Как впускные, так и выпускные клапаны VVT существуют для обеспечения контроля точных фаз газораспределения.

ECM (модуль управления двигателем) отвечает за управление движением распределительного вала с помощью соленоида переменной синхронизации фаз газораспределения, чтобы подавать сигнал для регулировки количества масла.Система VVT-i (Variable Valve Timing — интеллектуальная), получив сигнал от соленоида, может плавно изменять фазы газораспределения в соответствии с условиями работы двигателя.


Знаки, призывающие вас проверить шестерни VVT
1. Низкая топливная экономичность
Любая неисправность системы газораспределения может привести к потере топлива и производительности.
Если вы чувствуете, что экономия топлива снижается, скорее всего, система неисправна.

2. Неровная работа двигателя и работа на холостом ходу.
Это состояние особенно заметно при подъеме автомобиля в гору или под нагрузкой.

3. Проверьте двигатель Световой индикатор горит
, когда в двигателе что-то не так, ECL будет включаться, чтобы напомнить вам о необходимости проверки.
Поверенный механик подключит автомобильный компьютер для диагностики.

4. Грязное моторное масло
Загрязнение масла приведет к засорению системы цепи привода ГРМ и соленоида регулируемого газораспределения. Очень возможно, что VVT вышел из строя.

Сколько стоит замена распредвала VVTi?

Когда появляются симптомы неисправности шестерни vvti, вы столкнетесь с вышеуказанными условиями.
Тогда вы поймете, что пора сдавать машину в сервисный центр.

Если это просто проблема с грохотом VVT, то это не большая возня.

Возьмем, к примеру, стоимость замены шестерни Toyota vvti: в Великобритании вы можете использовать старые за 70–100 фунтов стерлингов или новые послепродажные за 120–150 фунтов стерлингов.
В Штатах это стоит около 150 ~ 200 долларов США за вторичное оборудование видеомагнитофона.
Это наверняка будет стоить намного дороже, если вы выберете оригинальные.

Что касается стоимости замены, предположим, что среднее количество рабочих часов составляет около 2-3 часов.
Замена распредвала VVT сама по себе не является сложной задачей, но для снятия двигателя и диагностики проблем требуется больше часов.
Поскольку мы берем в качестве примера стоимость замены шестерни Toyota vvt, на форуме часто можно увидеть, как люди обсуждают отказ шестерни vvt, а стоимость замены шестерни с регулируемым распределением фаз составляет около 2500 долларов США или даже больше.


И это удачная ситуация.
Я имею в виду удачу, потому что вы точно решаете проблемы и не занимает много времени.

Во многих случаях ремонтный центр не может определить проблемы.

Не говоря уже о том, что механики неквалифицированы или неопытны, это не машина сама по себе, когда вы приносите машину в ремонтную мастерскую.

(Поверьте, это случилось с моей машиной, и это действительно случилось со многими людьми.)


Способы сохранения шестерен VVT и увеличение срока их службы
Шестерни VVT также имеют масляный привод, рассчитанный на надлежащие нагрузки давления масла.
В большинстве случаев причиной неисправности VVT является загрязненное моторное масло, поэтому чистота масла очень важна.
Твердо придерживайтесь рекомендованного автопроизводителем плана технического обслуживания — лучший способ продлить срок службы. Некоторые детали в системе двигателя зависят от качества масла и надлежащего давления масла.
Регулярная проверка уровня масла может предотвратить повреждение вашего двигателя!

Смотреть больше:

Подробнее:

<детали двигателя Hyundai Parts Sonata>

Насколько важна замена цепи привода ГРМ и когда нужно менять цепь привода ГРМ

<4 Признака неисправности линейного соленоида трансмиссии>


<Общие причины проблем с изменением фаз газораспределения в вашем автомобиле>


3 ИЗВЕСТНЫЕ ПРОБЛЕМЫ ДВИГАТЕЛЯ LAND ROVER RANGE ROVER И НАШИ ПРЕДЛОЖЕНИЯ

📱 Напишите мне, и давай поговорим!
Добро пожаловать Владелец ремонтной мастерской свяжитесь с нами для обсуждения сотрудничества!

► Facebook: @ hjlautoparts1020

https: // www.facebook.com/hjlautoparts1020/?ref=bookmarks

► Instagram: @hjlautoparts

► WhatsApp: +886939531551

.

Добавить комментарий

Ваш адрес email не будет опубликован.