ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Что такое турбонаддув в автомобиле и как он работает

Турбонаддув современной конструкции – это сложное в техническом плане устройство. Первые системы для наддува двигателей появились еще в начале XX века. Наибольшее же распространение получила конструкция наддува, компрессор которой приводится от турбины, раскручиваемой выхлопными газами авто до высоких оборотов.

Энергия выхлопных газов бесплатна, поэтому мощность мотора при использовании турбокомпрессора значительно поднимается без ухудшения экономичности, а зачастую, экономичность двигателя даже улучшается (советы как уменьшить расход топлива). Из-за использования в конструкции турбины, такой вид наддува двигателя имеет всем хорошо известное название – турбонаддув.

Воздух при сжатии компрессором нагревается, плотность падает, и в цилиндры его помещается меньше, поэтому, довольно часто, после турбокомпрессора нагнетаемый воздух пропускают через специальный радиатор – интеркулер, в котором он охлаждается.

Частота вращения турбины и связанного с ней компрессора турбонаддува очень велика (больше ста тысяч оборотов в минуту), поэтому в них применяются подшипники скольжения с очень маленькими зазорами. Соответственно возрастает требовательность двигателя с турбонаддувом к качеству и чистоте масла. Конечно, стоимость этого агрегата тоже немаленькая.

Серьезным недостатком турбонаддува можно считать эффект так называемой ”турбоямы”. Он проявляется при резком нажатии на педаль акселератора – двигатель сперва ”задумывается” и только после этого начинает разгонять автомобиль.

Объясняется это тем, что турбине необходимо какое-то время для раскрутки до рабочих оборотов, и чтобы его уменьшить, на некоторых моделях турбокомпрессоров (как правило, предназначенных для легковых автомобилей) устанавливают специальный клапан, который перепускает часть воздуха с выхода компрессора обратно на его вход.

Таким образом, при закрытии дроссельной заслонки турбина продолжает вращаться с большой скоростью, а турбокомпрессор в это время работает “вхолостую”, перегоняя воздух по кругу.

Нажатие на педаль газа закрывает этот клапан, и нагнетаемый воздух в полном объеме снова поступает во впускной коллектор. Обычно управление перепускным клапаном турбонаддува возлагают на электронику.

Другой разновидностью наддува является приводной компрессор, который, в отличии от турбонаддува, вращается коленчатым валом двигателя. Поскольку для его привода отбирается энергия у мотора, такие системы менее экономичны, чем аналогичные силовые агрегаты без компрессора или с турбонаддувом. Зато они надежнее, дешевле и не имеют ”турбоямы”, что очень важно для спортивных автомобилей, где при разгоне каждая доля секунды на счету.

Такие компрессоры часто используют западные тюнинговые компании для увеличения мощности моторов – это гораздо дешевле, чем увеличивать рабочий объем, организуя мелкосерийное производство поршней, коленвалов и других технологически сложных деталей. Их используют такие автомобильные “гранды” как Mercedes, General Motors, Ford, Jaguar, Mazda и другие автопроизводители.

Принцип работы двигателя с турбонаддувом

Как работает турбонаддув в машине?

В природе не существует такой вещи, как идеальное изобретение: мы всегда можем сделать что-то лучше, дешевле, эффективнее и экологически более чистым. Возьмите двигатель внутреннего сгорания. Вы думаете, что это невероятно, что автомобиль, работающий на жидкости, может ускорить ваше путешествие из пункта А в пункт B в разы. Но всегда существует возможность создать двигатель, который будет работать быстрее, на большие расстояния, или использовать меньше топлива. Одним из способов улучшить двигатель является использование турбонаддува – пары вентиляторов, которые направляют выхлопные газы из задней части двигателя в его переднюю часть, тем самым предоставляя двигателю больше мощности. Мы все слышали о турбированных движках, но как именно это работает? Давайте рассмотрим этот вопрос подробнее!

Турбонаддув. Что это?

Вы когда-нибудь видели автомобили, которые проезжали мимо вас в облаке зловонного дыма, источником которого была их выхлопная труба? Для всех является очевидным тот факт, что выхлопные газы загрязняют окружающую среду, но менее очевидным остается тот факт, что это так же и пустая трата драгоценной энергии. Выхлопные газы являются смесью горячих газов, которые выходят из двигателя на приличной скорости и вся энергия, которая в них содержится – температуры и движения (кинетическая энергия) – бесполезно рассеивается в атмосфере. Разве не было бы замечательно, если бы двигатель мог использовать энергию выхлопных газов для собственного ускорения? Именно этим и занимается турбонаддув.

Автомобильные двигатели получают свою мощность от сгорания топлива в крепких металлических емкостях, которые называются цилиндрами. Воздух поступает в каждый цилиндр, смешивается там с топливом, и сгорает, при этом происходит небольшой взрыв, который приводит в движение поршень, а тот в свою очередь приводит в движение валы и шестерни, которые вращают колеса автомобиля. Когда поршень возвращается в первоначальное положение, он выталкивает отходы воздушно-топливной смеси из цилиндров. Это и есть выхлопные газы. Количество энергии, которую может произвести автомобиль, напрямую связано с тем, как быстро он сжигает топливо. Чем больше цилиндров в двигателе и чем больше они в объеме, тем больше топлива он может сжечь каждую секунду и (по крайней мере, теоретически) тем быстрее сможет ехать автомобиль.

Из урока приведенного выше мы уяснили, что одним из способов сделать автомобиль гораздо быстрее, это добавить больше цилиндров. Вот почему сверхбыстрые спортивные автомобили, как правило, оснащены восьмью или двенадцатью цилиндрами, а не четырьмя шестью, как стандартные семейные транспортные средства. Другой способ заключается в использовании турбонаддува, который нагнетает больше воздуха в цилиндры, чтобы двигатель мог сжигать топливо с большей скоростью. Турбонаддув является простой, относительно дешевой, дополнительной конструкцией, которая помогает извлечь из двигателя больше мощности. Это изобретение вошло в ТОП 10 улучшений в конструкции двигателя со времен его создания (об этом, а также о многом другом, более подробнее здесь).

Как работает турбонаддув?

Если вы знакомы с принципом работы реактивного двигателя, то вы на полпути к пониманию принципа работы автомобильного турбонаддува. Реактивный двигатель всасывает холодный воздух спереди, сжимает его в камере, где он сгорает с топливом, а затем выпускает горячий воздух с обратной стороны двигателя на большой скорости. Когда горячий воздух покидает двигатель, он проходит мимо турбины (которая внешне немного похожа на очень компактную металлическую лестницу), что приводит в движение компрессор (воздушный насос) в передней части двигателя. Этот компрессор толкает воздух в двигатель, чтобы сжечь топливо должным образом. Принцип работы турбонаддува в автомобиле практически точно такой же. Он использует выхлопные газы для приведения турбины в действие. Она вращает воздушный компрессор, который нагнетает дополнительный воздух в цилиндры, чтобы сжигать больше топлива каждую секунду. Вот почему автомобили с турбонаддувами обладают большей мощностью.

Как это работает на практике? Фактически турбокомпрессор – это два небольших вентилятора (так называемые лопастные колеса или газовые насосы), которые размещены на одном металлическом валу, так что оба вращаются в одну сторону. Один из этих вентиляторов, который называется турбиной, расположен на пути потоков выхлопных газов из цилиндров двигателя. Как только цилиндры выпускают горячий газ, он вращает лопасти вентилятора, что приводит в движение вал, на котором размещен вентилятор. Второй вентилятор, который называется компрессором, также начинает вращаться, так как расположен на одном валу с турбиной. Он установлен внутри воздухозаборника автомобиля, поэтому, как только он начинает вращаться, он засасывает воздух в машину и нагнетает его в цилиндры.

Но на этом этапе возникает небольшая проблема. Если вы сжимаете газ, вы повышаете его температуру. Горячий воздух имеет меньшую плотность, а это уменьшает его эффективность в помощи при сгорании топлива. Так что, было бы намного лучше, если бы воздух, поступающий из компрессора, охлаждался до того, как он попадет в цилиндры. Для того, чтобы решить эту проблему и охладить воздух, выход из турбокомпрессора проходит через теплообменник, который забирает лишнюю температуру себе и направляет ее в более подходящие места.

Существует ряд мнений, что турбины ненадежны, что они часто ломаются и требуют полной замены. Мы не совсем согласны с этим утверждением. Почему? Об этом читайте в нашей статье: Есть ли недостатки у двигателей с турбонаддувом?

Схема работы турбонаддува с картинкой

Основная идея заключается в том, что выхлопные газы приводят в движение турбину (красный вентилятор), который непосредственно подключен (и питает) к компрессору (синий вентилятор), который нагнетает воздух в двигатель. Для простоты, мы показываем только один цилиндр. Давайте рассмотрим весь принцип работы пошагово.

1 . Холодный воздух поступает в воздухозаборник двигателя и направляется в компрессор.

2 . Вентилятор компрессора помогает засасывать воздух внутрь.

3 . Компрессор сжимает и нагревает поступающий воздух и выдувает его снова.

4 . Горячий, сжатый воздух из компрессора проходит через теплообменник, который охлаждает его.

5 . Охлажденный, сжатый воздух поступает в воздухозаборник цилиндра. Дополнительный кислород помогает сжигать топливо в цилиндре с большей скоростью.

6 . Так как в цилиндре сжигается больше топлива, он быстрее производит энергию и может отправлять больше мощности на колеса через поршни, валы и шестерни.

7 . Выхлопные газы из цилиндра выходят через выпускные трубы.

8 . Горячие выхлопные газы проходят мимо турбины и заставляют ее вращаться с высокой скоростью.

9 . Вращающаяся турбина установлена на том же валу, что и компрессор (на нашей картинке вал изображен оранжевым цветом). Таким образом, если вращается турбина, то и компрессор тоже.

10 . Выхлопные газы выходят из автомобиля, но при этом тратиться меньше ценной энергии, чем, если бы двигатель был без турбонаддува.

Принцип работы турбонаддува в автомобиле

На чтение 5 мин. Просмотров 215

Турбонаддув на автомобиле как вид тюнинга. Что он дает и как он работает. Основные моменты конструкции, работы и установки турбин на автомобиле.

Любого автовладельца хотя бы раз в жизни посещала мечта о повышении мощности и рабочих характеристик своего железного коня, причем рождаются такие мысли не только у владельцев бюджетных автомобилей, она посещает головы и владельцев мощных спортивных суперкаров. И эту мечту можно осуществить. Технические прогресс принес в нашу жизнь возможность выполнить тюнинг и модернизацию любой техники. Увеличение мощности двигателя возможно за счет установки дополнительного оборудования в виде турбины, или как её еще называют – система турбонаддува. Она может быть установлена на любой двигатель, независимо от типа и марки. Если турбонаддув уже установлен, то тюнинг основывается на улучшении его рабочих характеристик.

Турбина в разрезе

Турбонаддув – что он дает

Выполнить тюнинг двигателя с получением увеличения мощности можно выполнить различными способами. В случае с турбиной, происходит интенсивное наполнение цилиндров топливно-воздушной смесью. Всасывание воздуха выполняется в автоматическом режиме. Если не устанавливать турбонаддув, то повысить мощность можно только за счет увеличения объемов цилиндров. При этом будет наблюдаться повышенный расход топлива, а сам двигатель на автомобиле должен быть массивнее.

Чтобы избежать увеличения массы двигателя и расхода топлива, надо увеличить интенсивность подачи топливно-воздушной смеси. Для этих целей и устанавливается турбина, которая выполняет роль нагнетателя.

В зависимости от того, какого типа установлен турбонаддув и какой двигатель, этот тюнинг позволяет достичь увеличения мощности 1,5-2 раза. При этом, не смотря на расхожее мнение, вреда для мотора не будет никакого, особенно если правильно настроить работу систем охлаждения и подачи масла. Чтобы это понять, стоит рассмотреть как работает турбонаддув.

Виды систем турбонаддува

Турбонаддув, устанавливающийся на современные двигателя, можно разделить на 3 вида:

  • Резонансный. Особое распространение получил на двигателях с распределенным впрыском. Работа основана на кинетической энергии объема воздуха, при этом происходит повышение давления воздушно-топливной смеси в момент открытия впускного клапана;
  • Газотурбинный. Является более популярным и приводится в действие выхлопными газами;
  • Объемный нагнетатель. Привод таких турбин выполняется в основном ременной передачей, а работает она по принципу обычного механического компрессора.

Так как наиболее распространенным видом является все-таки газотурбинные системы, то и рассмотрим конструкцию принцип работы турбонаддува именно этого типа. Итак, турбина – это механизм, состоящий из корпуса, в котором вращаются вал с крыльчаткой. На конструкции навешен пневмопривод, роль которого состоит в активации перепускного клапана, который необходим для регулировки вращения турбины. То есть это выглядит следующим образом: в процессе нагнетания воздуха компрессором происходит повышение давления, пневмопривод в этот момент открывает клапан и выбрасывает часть газов в выхлопную систему, тем самым уменьшая скорость вращения турбины.

Турбонаддув

Турбонаддув работает по такой схеме: отработанные газы выводятся из выпускного коллектора на лопасти турбинного колеса, оно приводит в движение, находящееся с ним на одном валу, компрессионное колесо, которое, в свою очередь,во время вращения создает большое давление воздуха и подает его во впускной коллектор двигателя. Увеличенное количество воздушно-топливной смеси. Этот процесс в конечном итоге приводит к повышению мощности двигателя автомобиля.

 Особенности тининга двигателей

Такое вмешательство в работу двигателя любого автомобиля – дело довольно серьезное. Такой тюнинг требует достаточного количества времени и средств, ведь типового решения этого вопроса не существует и в большинстве случаев многие детали выполняются на заказ в единичном исполнении.

К тому же, если установить на автомобиле турбину и не позаботиться о установке коллектора, интеркуллера и других элементов, то такое изменение конструкции особо ничего хорошего не принесет. Довольно часто тюнинг двигателя требует установки двух турбин, с низкими и высокими оборотами. Борьбу с задержкой реакции осуществляют установкой турбины с наклонным ротором и турбокомпрессорами с керамическими лопастями. Какими элементами будет наделен турбонаддув очень сильно зависит от характера езды, под который автомобиль готовится.

Установленный на автомобиле турбина, вынуждает владельцев выполнить тюнинг трансмиссии, ходовой части и тормозной системы. Дополнительно стоит выполнить тюнинг сцепления, привести в соответветствие новым параметрам и элементы подвески.

Если же на автомобиль установить двойной турбонаддув, способный работать на низких оборотах, следует приготовиться к серьезным изменениям динамики машины. Поэтому обязательно потребуется доводка остальных систем суперкара.

Эксплуатация авто с турбиной

Турбина

Такой тюнинг также требует особых условий эксплуатации. При соблюдении некоторых правил можно продлить срок работы турбины:

  • Своевременно проводить очистку масляных и воздушных фильтров;
  • Чтобы турбонаддув можно было эксплуатировать на протяжении длительного времени, необходимо периодически смазывать его и не допускать перегрева;
  • Перед началом движения «прогнать» двигатель на холостом ходу; эксплуатировать двигатель в оптимальном режиме

Рекомендации к установке турбины

Для того чтобы тюнинг посредством установки турбины радовал вас длительный срок, необходимо поддерживаться основных правил при установке и работе:

  • Выпускной коллектор.Основным компонентом турбины для авто является выпускной коллектор, снабженный фланцами, совместимыми с «посадочным местом» турбокомпрессора.  Для вывода отработанного газа в выхлопную магистраль необходим даунпайп (фланец), к которому необходимо приварить специальную гайку под лямбда зонд.Для уплотнения зазоров в местах соединения выпускного коллектора и даунпайпа необходимо использовать специальные прокладки.
  • После охлаждения турбины охлаждающая жидкость должна быть возвращена в емкость, откуда она была взята. Для этого к турбокомпрессору подводятся маслослив и магистраль отвода жидкости.

Несоблюдение данных рекомендаций может привести к выходу турбокомпрессора из строя, снижению давления в системе смазки, нарушениям в работе мотора и появлению очагов возгорания под капотом автомобиля.

Плюсы и минусы турбированных двигателей

Многие производители используют турбонаддув для повышения мощности двигателя машины. Этот узел работает по достаточно простому принципу: выхлопные газы вращают крыльчатку турбины, а она передаёт полученный крутящий момент на крыльчатку компрессора, оснащённую широкими лопастями.

Компрессор в системе впуска автомобиля играет роль насоса — он повышает давление воздуха, позволяя одновременно подавать в цилиндры больше топлива без риска его неполного сгорания. Несмотря на возможность значительного повышения мощности и КПД двигателя, турбированные моторы не получили очень широкого распространения.

Чтобы понять, почему, а также решить, стоит ли приобретать автомобиль, оснащённый таким агрегатом, нужно рассмотреть плюсы и минусы турбированных двигателей.

Преимущества

Сразу стоит сказать, что дальше речь пойдёт только о бензиновых двигателях. Установка турбонаддува на дизельный мотор является практически единственным способом эффективно дозировать количество топливовоздушной смеси, попадающей в цилиндры. Около 90% современных легковых дизелей и 70% грузовых агрегатов оснащается турбонаддувом, поэтому говорить про их плюсы и недостатки будет некорректно.

Турбодизельный двигатель

Главной положительной стороной любого турбированного двигателя по сравнению с атмосферным является повышенная мощность. Причём производитель может создавать несколько вариантов мотора с различными показателями производительности — для этого достаточно только изменить максимальное давление наддува и перенастроить систему впуска. Серийные бензиновые двигатели с турбонаддувом имеют на 10–150% большую мощность, чем их аналоги, оснащённые обычными системами впуска и выхлопа.

Кроме того, плюсы турбированных агрегатов проявляются и в более эффективной работе за счёт оптимизированного процесса сгорания бензовоздушной смеси в цилиндрах. Благодаря этому удельный расход топлива в расчёте на одну лошадиную силу несколько снижается, хотя абсолютное значение может и вырасти за счёт повышенной мощности. Оптимизированный процесс сгорания также позволяет уменьшить уровень шума и неприятной вибрации по сравнению с атмосферными агрегатами. В особенности такие плюсы актуальны для моторов с неуравновешенной компоновкой,например, с двумя, тремя и пятью цилиндрами.

Видео, как работает турбированный двигатель:

Более эффективное сгорание топлива даёт возможность уменьшить объём токсических веществ, которые выбрасываются в воздух через выхлопную трубу. Именно поэтому многие производители начали выпуск турбированных агрегатов очень малого объёма вместо привычных атмосферных моторов. По оценкам специалистов, введение новых норм токсичности выхлопа в Европе и США на 25% увеличило количество выпускаемых турбированных моторов.

Недостатки

Установка турбонаддува на автомобиль способствует повышению его стоимости — комплект деталей для повышения мощности двигателя оценивается примерно в 1–3 тысячи долларов. Конечно, некоторые производители могут снижать цены, чтобы стимулировать продажи авто с турбированными двигателями, но общая закономерность именно такова. Стоит сказать и про стоимость ремонта турбированного агрегата — она возрастает за счёт увеличенной сложности разборки всего мотора, а также за счёт необходимости обслуживания нового узла. Средний срок службы турбины составляет 100–150 тысяч километров, после чего ей потребуется капитальный ремонт либо полная замена.

Недостатки проявляются и в необходимости частой замены масла. Межсервисные интервалы для турбированных двигателей сокращены примерно на 30–40%, что связано с большими нагрузками, приходящимися на все узлы силового агрегата. Несвоевременная замена масла приведёт к полной потере его свойств за счёт окисления. Смазывающая жидкость подвергается сильному нагреву в системе турбонаддува, что приводит к полному изменению её параметров.

Нужно вовремя менять масло в турбированных двигателях

Управлять автомобилем с турбированным двигателем не столь удобно — наверняка все слышали про такое понятие, как «турбояма». Она представляет собой определённый диапазон оборотов, в котором давления выхлопных газов недостаточно для того, чтобы раскрутить крыльчатку турбины до рабочей скорости. Поскольку двигатель рассчитан на работу с увеличенным давлением в системе впуска, его динамика будет сильно ухудшена, пока водитель не увеличит обороты. Конечно, на современные автомобили устанавливаются системы турбонаддува с изменяемой геометрией крыльчатки, с малоинерционной турбиной или вовсе с двумя компрессорами наддува, отличающимися базовыми параметрами, но недостаток остаётся актуальным, хотя и не столь очевидным.

Все, знакомые с физикой и сопротивлением материалов также знают, что при быстром изменении температурного режима работы металлические детали теряют свою прочность и быстро выходят из строя. Это правило актуально и для турбированных двигателей. Поэтому силовому агрегату стоит дать поработать на невысоких оборотах около 1–2 минут в следующих случаях:

  • Перед началом езды;
  • После окончания поездки;
  • После активной езды или во время сильных морозов время может увеличиваться до 3 минут.

Многие водители ставят на свои автомобили «турботаймеры», которые позволяют засечь время, необходимое для прогрева или должного охлаждения силового агрегата.

Быть или не быть?

Большинство турбированных моторов предназначено для активной езды — их повышенная мощность позволяет улучшить разгонную динамику. Хотя современные силовые агрегаты малого объёма, оснащённые турбонаддувом, разрабатывались скорее для снижения токсичности выхлопа по сравнению с атмосферными двигателями большего объёма, но аналогичной мощности. В любом случае турбированный двигатель имеет более высокие показатели эффективности работы и позволяет лучше использовать все возможности автомобиля.

Однако при этом водителю придётся мириться с некоторыми неудобствами, связанными с необходимостью прогрева и охлаждения двигателя, а также поддержания определённого минимального уровня оборотов. Кроме того, установка турбонаддува повышает цену машины и стоимость её ремонта.

История развития турбонаддува у Renault

При словах «Renault с турбомотором» сегодня мы, разумеется, вспоминаем о новинках вроде Arkana, представленной год назад. Турбомотор объемом 1,3 литра с индексом H5Ht, который назначили старшим в линейке, пришел на смену двухлитровому атмосфернику F4R. Он разработан концерном Renault-Nissan совместно с Daimler и роднит Arkana не только с Nissan X-Trail и Qashqai, но и, например, с Mercedes-Benz А-, B- и C-класса, а также CLA.

С точки зрения технологичности это шаг вперед: плазменное напыление стенок цилиндров для снижения трения, система изменения фаз газораспределения на впуске и выпуске, непосредственный впрыск и собственно турбонаддув. Мощность уложили в налогово удобные 150 л.с., при этом крутящий момент у двигателя на треть выше, чем у предшественника – 250 Нм против 190, а полка этого момента достигается уже на 1700 об/мин. К нам привезли версию мотора, соответствующую стандарту Евро-5: здесь нет фильтра твердых частиц, а сертифицированное топливо – АИ-95. А еще инженеры Renault обещают, что у старого и нового моторов схожий ресурс – но об этом мы еще поговорим в отдельном материале.

Кстати, этот же двигатель теперь устанавливается и на новый Kaptur, который после обновления разделил платформу с Arkana.

Однако Arkana и Kaptur – это представители современного турбомира: малообъемные, энергоэффективные, экологичные и экономичные. Строгий расчет и актуальные требования к выбросам играют сегодня не меньшую роль при разработке, чем удовольствие от вождения. Но полвека назад все было иначе: тогда французы принесли знамя турбонаддува в новый для него мир и показали всем, что хорошей инженерией и порцией дополнительного воздуха на впуске можно добиться большего, чем просто хорошей инженерией.

Renault Kaptur

От Ле-Мана к Формуле-1

К моменту дебюта первого в истории наддувного мотора в Формуле-1 у Renault уже был обширный гоночный опыт и соответствующие амбиции. Французы с 50-х годов успешно гонялись в ралли, а в 60-е заручились поддержкой «колдуна» Амадея Гордини, которому была по плечу разработка автомобилей для разных спортивных дисциплин. К середине 70-х официально сформировалось гоночное подразделение Renault Sport, куда помимо Gordini входила и Alpine. Круг интересов компании был широк: ралли, собственные монокубки, гонки на выносливость и, конечно же, Формула-1. Однако появлению турбонаддува в Формуле предшествовал его успех в одном из тяжелейших для техники соревнований, серии Ле-Ман.

В гонках на выносливость французы устроили полномасштабную схватку с немцами из Porsche, которые примерно в то же время осознали наддув как новый путь на подиум. В начале 70-х Renault заключила соглашение с нефтяным гигантом Elf о разработке программы для участия в гонках на выносливость, а на острие прогресса оказался мотор V6 объемом 2 литра. Агрегат с индексом CH разрабатывался командой специалистов из Renault-Gordini под руководством Франсуа Кастена, технического директора компании, которая позже войдет в подразделение Renault Sport. Мотор имел актуальную и по сей день конструкцию: два распредвала в головке блока и четыре клапана на цилиндр, а с учетом того, что раскручивать его можно было до 10 000 об/мин, он выдавал почти 300 лошадиных сил.

Свою гоночную жизнь двигатель сразу начал с побед: в кузовном чемпионате Ch2, установленный в прототип Alpine A441, помог команде выиграть все 7 гонок. Однако для Ле-Мана мощности атмосферного Ch2 было недостаточно, и вместо разработки более объемного безнаддувного мотора в Renault-Gordini решили пойти другим путем: снять в полтора раза больше мощности с того же объема, добавив турбину.

Renault Alpine A441 1974

Чтобы понимать степень авантюризма инженеров, нужно помнить, что технология наддува в гоночных автомобилях к тому моменту хоть и применялась, но не была ни слишком популярна, ни достаточно отработана. За самим нагнетателем французы обратились в американскую фирму Garrett, которая предоставила им турбину от… грузовика. Да-да, это сейчас американцы предлагают ассортимент «улиток» на любой вкус, а в те годы ситуация обстояла иначе: в самом начале мы не зря говорили, что наддув был уделом рабочих лошадок, а не гоночных болидов. Тем не менее турбина от дизельного грузовика себя полностью оправдала: огромный турболаг в длительных гонках уходил на второй план, а надежность позволила французам из Alpine завоевать восемь призовых мест в серии Ле-Ман, два из которых были отмечены золотом. Мотор с индексом CHS крутился до 9500 об/мин и выдавал 500 лошадиных сил – почти столько же, сколько у «воздушника» Porsche чуть большего объема. Попутно инженеры доводили и отлаживали технологию – экспериментировали с размером и интеркулеров и давлением наддува, хотя до эффективных жидкостных интеркулеров и двойного наддува дело дошло только в Формуле-1.

Зато до самой Формулы дело дошло быстро: успехи в кузовных чемпионатах и Формуле-2, в которой блистал атмосферный Ch2, вдохновили французов на новую авантюру. Справедливости ради стоит отметить, что штучные и неудачные попытки применения наддува в Формуле-1 были и раньше, в 50-е годы: с тех пор в регламенте поселилось правило о том, что вместо 3-литрового атмосферного мотора можно использовать турбированный 1,5-литровый. Это же правило было и одним из ключевых ограничений для внедрения турбин: технологии тех лет не позволяли сделать вдвое меньший по объему двигатель столь же мощным, надежным и эффективным в гонке. По крайней мере, до тех пор, пока за дело не взялись в Renault.

Для самих французов задача оказалась действительно сложной: на практике сделать из успешного двухлитрового мотора столь же идеальный 1,5-литровый было сложнее, чем просто удлинить шатуны или уменьшить диаметр цилиндра. К тому же турбояма в несколько секунд, приемлемая в Ле-Мане, в формульных условиях была куда более критичной. Тем не менее уже в первом сезоне болид Renault RS01 с двигателем EF1, разработанным Бернаром Дюдо на основе мотора CHS, смог набрать свои первые очки.

Renault RS01 1977–79

1 / 4

Renault RS01 1977–79

2 / 4

Renault RS01 1977–79

3 / 4

Renault RS01 1977–79

4 / 4

В следующем году помимо жидкостного интеркулера в системе наддува появились две «нормальные» турбины от компании KKK: они были не грузовыми, а гоночными, обеспечивали меньший турболаг и уже несколько лет использовались немцами из Porsche. Результат упорной работы принес свои плоды: в 1979 году новая машина с индексом RS10 взяла золото на домашнем Гран-при Франции, вписав в гоночную историю Renault еще одно уникальное достижение.

Своим первым же экспериментом Renault доказала, что будущее Формулы – за турбированными моторами. Французы не отказались от своей идеи и продолжили упорную работу над повышением надежности, сокращением турболага и увеличением мощности. На рубеже семидесятых-восьмидесятых годов Renault Sport продолжала успешно составлять конкуренцию носителям «традиционных» агрегатов, попутно стимулируя развитие технологии наддува. Так, к началу 80-х в игру включилась компания Garrett, чьи турбины вновь заняли место на моторах Renault. Неудивительно, что к середине восьмидесятых в турбонаддув поверили все, и в Формуле-1 не осталось ни одного атмосферного болида. Мощности тоже росли как на дрожжах: если в семидесятых речь шла о полутысяче лошадиных сил, то десять лет спустя моторы выдавали тысячу, а в коротких квалификационных заездах – до 1200 сил! Renault как первопроходец и лидер поставляла свои двигатели другим командам – французскими моторами оснащались болиды Ligier, Lotus и Tyrell.

Ралли: от заднемоторных машин к заднемоторным монстрам

В ралли французы участвовали с незапамятных времен: еще в 50-е годы совершенно не гоночные на первый взгляд заднемоторные бюджетники Renault Dauphine занимали призовые места в европейских и не только соревнованиях. 

Renault Dauphine 1956–67

1 / 3

Renault Dauphine 1956–67

2 / 3

Renault Dauphine 1956–67

3 / 3

Но любопытно, что с точки зрения внедрения турбонаддува Renault и в этой дисциплине оказалась пусть и не первой, но одной из первых компаний. Наддув пришел в ралли почти в то же время, что и в Формулу: турбированный Saab завоевал победу на домашнем ралли Швеции, а в 1981 году на ралли Монте-Карло первым приехал экипаж уже на Renault 5 Turbo. В Renault с достаточным энтузиазмом подошли к разработке автомобилей для раллийного чемпионата, так что маленький хэтчбек был не единственным болидом компании. 

Renault 5 Turbo 1980–82

1 / 5

Renault 5 Turbo 1980–82

2 / 5

Renault 5 Turbo 1980–82

3 / 5

Renault 5 Turbo 1980–82

4 / 5

Renault 5 Turbo 1980–82

5 / 5

До него омологацию в Группу 4 прошел Renault-Alpine A310 с расположенным сзади 290-сильным мотором V6 с индексом PRV, но то была атмосферная машина, которая к началу восьмидесятых оказалась не так актуальна. Ведь все мы помним, к чему шло дело: в 1982 году была официально утверждена Группа Б.

Renault Alpine A310 V6 ‘1976–85

1 / 4

Renault Alpine A310 V6 ‘1976–85

2 / 4

Renault Alpine A310 V6 ‘1976–85

3 / 4

Renault Alpine A310 V6 ‘1976–85

4 / 4

Группу Б фанаты классического ралли помнят как самую безлимитную и безумную за всю историю этих гонок. В ней в одночасье сошлось все: именно в эти годы производители распробовали полный привод, а с учетом отмены практически всех технических ограничений в угоду зрелищности и скорости раллийные машины превратились практически в формульные болиды. Турбонаддув, разумеется, из категории «потенциально перспективной технологии» перешел в статус «обязательно к применению». А с учетом того, что для омологации гоночного болида было достаточно выпустить всего 200 серийных машин, французы не стали ограничивать себя в желаниях и выкатили «маленькое зло». Взяв за основу переднемоторный переднеприводный хэтчбек Renault 5, они создали среднемоторный болид, поставив перед задней осью свой проверенный 1,4-литровый мотор семейства Cleon-Fonte и снабдив его турбонагнетаталем Garrett. В результате немолодой уже двигатель нижневальной конструкции с приводом клапанов коромыслами стал выдавать 160 л.с. Но если вам кажется, что это много, не обольщайтесь: это было только начало.

Renault 5 Turbo Group B 1980–82

1 / 5

Renault 5 Turbo Group B 1980–82

2 / 5

Renault 5 Turbo Group B 1980–82

3 / 5

Renault 5 Turbo Group B 1980–82

4 / 5

Renault 5 Turbo Group B 1980–82

5 / 5

Французы прекрасно понимали, что выбранная ими заднеприводная схема не максимально конкурентна на фоне полноприводных Audi Quattro, Peugeot 205 и Ford RS200, а потому стремились выжать все из своего болида с самыми скромными габаритами и самым маленьким объемом двигателя. Вдобавок борьба шла за разрешенную ширину покрышек: коэффициент класса учитывал наличие наддува и объем двигателя, выдавая в результате вычислений максимально допустимое значение ширины шин. Для заднеприводного Renault 5 это было вопросом первостепенной важности, так что инженеры окончательно смели все ограничения, чтобы к середине 80-х выпустить на раллийные трассы нечто невообразимое даже по современным меркам.

Renault 5

Renault 5 Maxi Turbo, прошедший омологацию в 1985 году, полностью соответствовал своему названию: он действительно обеспечивал максимально возможную отдачу двигателя и шасси. Объем двигателя из все тех же шинных соображений увеличили до 1,5 литров, с которых сняли умопомрачительные 350 лошадиных сил. Доводке подвергся не только мотор: болид получил новый аэродинамический обвес, переработанное рулевое управление и переднюю подвеску, что вкупе с более широкими шинами позволяло выйти на новый конкурентный уровень. Первые результаты не заставили себя ждать – в том же 1985 году Жан Раньотти на Maxi Turbo выиграл ралли Корсики. Но продолжения дрессировки маленького заднеприводного зверя на грунтовых трассах для борьбы с полноприводными машинами не случилось: в том же 1985 году авария унесла жизнь пилота Lancia 037 Аттилио Беттега, а год спустя смертельная авария его товарища по команде Хенри Тойвонена окончательно поставила крест на будущем Группы Б.

Renault Maxi 5 Turbo 1985

1 / 5

Renault Maxi 5 Turbo 1985

2 / 5

Renault Maxi 5 Turbo 1985

3 / 5

Renault Maxi 5 Turbo 1985

4 / 5

Renault Maxi 5 Turbo 1985

5 / 5

Накопленный в Renault опыт обеспечил успех Renault 5 в гонках в руках частных пилотов на долгие годы вперед, а также лег в основу новых моделей. Так, Renault 11 Turbo, оснащенные все тем же 1,4-литровым мотором Cleon-Fonte, завоевали несколько первых мест в мировом раллийном чемпионате, где на смену Группе Б пришла более сдержанная Группа А. А вот наследники безумных раллийных болидов зачастую были атмосферными. Так, Renault Clio RS V6, оснащенный трехлитровым мотором L7X, помещенным, как у Renault 5 Turbo, перед задней осью, заручился рабочим объемом вместо наддува, и 250 сил было вполне достаточно, чтобы эпатировать публику и показывать отличную динамику на круге. 

Renault Clio V6 2003-05

1 / 2

Renault Clio V6 2003-05

2 / 2

Renault Clio Maxi, носящий ту самую приставку, что сделала Renault 5 столь яростным, оснащается доработанным двухлитровым атмосферником, что позволяет ему успешно участвовать в ралли. Преемником идеологии наддува же стал Megane RS, который нам больше известен не как раллийный болид, а как участник асфальтовых чемпионатов и монокубков. А еще как рекордсмен Нюрбургринга в своем классе и просто интересный гражданский автомобиль. Ведь история дорожных турбированных моделей Renault не ограничивается гражданскими версиями раллийных машин: она плавно расширялась от быстрых и мощных заряженных автомобилей до современных моделей, в которых наддув – это инструмент не только динамики, но и экологии. Давайте взглянем на самых интересных представителей этой когорты.

Renault Megane RS R26.R 2008, Renault Mégane R.S. N4 2011-н.в., Renault Mégane R. S. TCR 2019-н.в.

1 / 3

Renault Megane RS R26.R 2008, Renault Mégane R.S. N4 2011-н.в., Renault Mégane R.S. TCR 2019-н.в.

2 / 3

Renault Megane RS R26.R 2008, Renault Mégane R.S. N4 2011-н.в., Renault Mégane R.S. TCR 2019-н.в.

3 / 3

От гонок к гражданским машинам

Разумеется, хронологический список интереснейших дорожных машин Renault с турбонаддувом должен открывать Renault 5 Turbo. Гражданская (насколько это слово применимо к адаптации бескомпромиссной гоночной машины) версия заднемоторного хэтчбека оснащалась 1,4-литровым мотором мощностью 160 л.с. Устоявшегося понятия «хот-хэтч» тогда еще не существовало, но кто осмелится сказать, что 5 Turbo не таков?

Следующим автомобилем, заслуживающим повторного упоминания, мы назовем Renault 11 Turbo. Его можно назвать условным преемником 5 Turbo: он не только сменил его на раллийных допах, но и унаследовал 1,4-литровый турбомотор. Правда, здесь он располагался традиционно, спереди, и приводил в движение передние колеса, а мощность дорожных машин не превышала 115 л.с.

Renault 11 Turbo 1984–86

1 / 3

Renault 11 Turbo 1984–86

2 / 3

Renault 11 Turbo 1984–86

3 / 3

Принципиально новую концепцию французы реализовали в середине девяностых, представив Renault Safrane Biturbo. Во-первых, как несложно догадаться, это был автомобиль с двумя турбинами, которые добавили к трехлитровому мотору PRV от спорткупе Alpine A610. В доработке и доводке участвовали специалисты немецких тюнинг-ателье Hartge и Irmscher, а итоговая отдача составила свыше 260 л.с. Во-вторых, Safrane Biturbo оснащался исключительно механической коробкой передач – технически это было обусловлено отсутствием подходящей АКП для поперечно расположенного мотора такой мощности вкупе с полным приводом. А в-третьих – да-да, хэтчбек оснащался полным приводом с вязкостной муфтой в приводе задних колес, что обеспечивало ему не только динамику в 7,2 секунды до сотни, но и интересную управляемость.

Renault Safrane Bi-Turbo 1993–96
Renault Alpine A610 1991–95

В наши дни роль компактного и быстрого турбированного хот-хэтча выполняет Renault Clio RS. Только к четвертому поколению субкомпакт сменил двухлитровые атмосферные двигатели Renault на 1,6-литровый турбомотор MR16DDT концерна Renault-Nissan. На «обычных» Clio RS он выдает 200 лошадиных сил, а на версии Trophy его отдача поднята до 215. Обеспечивает это полный набор современных технологий: здесь и непосредственный впрыск, и фазорегуляторы на впуске и выпуске, и напыление стенок цилиндра, снижающее потери на трение. Кстати, этот мотор получил и гоночное применение: в 2012 году на прототипе Nissan DeltaWing он участвовал в 24 часах Ле-Мана.

Renault Clio R.S. 2006–09, Renault Clio R.S. 2009–12, Renault Clio R.S. Gordini 2010–12, Renault Clio R.S. 220 Trophy 2015–16, Renault Clio R.S. 200 2016–н.в., Renault Clio R.S. Line 2019–н.в.

1 / 6

Renault Clio R.S. 2006–09, Renault Clio R.S. 2009–12, Renault Clio R.S. Gordini 2010–12, Renault Clio R.S. 220 Trophy 2015–16, Renault Clio R.S. 200 2016–н.в., Renault Clio R.S. Line 2019–н.в.

2 / 6

Renault Clio R.S. 2006–09, Renault Clio R.S. 2009–12, Renault Clio R.S. Gordini 2010–12, Renault Clio R.S. 220 Trophy 2015–16, Renault Clio R.S. 200 2016–н.в., Renault Clio R.S. Line 2019–н.в.

3 / 6

Renault Clio R.S. 2006–09, Renault Clio R.S. 2009–12, Renault Clio R.S. Gordini 2010–12, Renault Clio R.S. 220 Trophy 2015–16, Renault Clio R.S. 200 2016–н.в., Renault Clio R.S. Line 2019–н.в.

4 / 6

Renault Clio R.S. 2006–09, Renault Clio R.S. 2009–12, Renault Clio R.S. Gordini 2010–12, Renault Clio R.S. 220 Trophy 2015–16, Renault Clio R.S. 200 2016–н.в., Renault Clio R.S. Line 2019–н.в.

5 / 6

Renault Clio R.S. 2006–09, Renault Clio R.S. 2009–12, Renault Clio R.S. Gordini 2010–12, Renault Clio R.S. 220 Trophy 2015–16, Renault Clio R.S. 200 2016–н.в., Renault Clio R.S. Line 2019–н.в.

6 / 6

Если отвлечься от заряженных моделей, то внимания, несомненно, заслуживает актуальное поколение Renault Twingo. Оно отличается от подавляющего большинства современных машин заднеприводной заднемоторной компоновкой, которая с учетом малокубатурного турбированного двигателя отсылает нас прямиком к истокам – Renault 5 Turbo. 

Renault Twingo 2019–н.в.

Тем, кто возразит, что его 900-кубовый мотор h5Bt мощностью 90 л.с., разработанный совместно с Nissan и Daimler, не слишком-то напоминает о былых ралийных победах, мы напомним о концепте Twin’Run, который в буквальном смысле возродил историческое прошлое. Это полноценный спортивный прототип, построенный на трубчатом каркасе, в котором на задней оси расположен 3,5-литровый V6 мощностью 320 л.с., работающий в паре с секвентальной шестиступенчатой коробкой передач. А номер 5, расположенный на боку уникальной машины, говорит сам за себя.

Renault Twin’Run Concept 2013

1 / 3

Renault Twin’Run Concept 2013

2 / 3

Renault Twin’Run Concept 2013

3 / 3

Ну а если говорить о турбированных Renault в России, то это Renault Arkana и Kaptur, о которых мы рассказали в самом начале. Их современный мотор H5Ht венчает долгую и успешную историю развития турбонаддува – от времен, когда к легковому спортивному мотору пристыковывали турбину от дизельного грузовика, до сегодняшних дней, когда турбокомпрессор стал неотъемлемым элементом современного двигателя. В нем воплощены все актуальные технологии: компактная турбина с быстрым откликом и быстрым выходом на рабочее давление, перепускной клапан с электронным управлением, система изменения фаз газораспределения на впуске и выпуске, а также непосредственный впрыск и столь любимый многими цепной привод ГРМ. Учитывая все это, можно полагать, что эксплуатационные характеристики мотора будут такими уже уверенными, как впечатления от него.

Основы турбонаддува (теория турбонаддува)

Способность турбонагнетателя увеличивать мощность наиболее наглядно демонстрировалась гоночными автомобилями Гран-при Формулы 1 эпохи 1977-1988 годов. Сравнение мощности дрегстеров с мощностью болидов Формулы 1 показывает абсолютное превосходство двигателей с турбонаддувом. Реальная мощность драгстера с 8-ми литровым двигателем находится в диапазоне 5000-6000 л . с , что означает 0,62 — 0,75 л.с. с 1 куб. см. Эти цифры выглядят блекло в сравнении с 1300-1400 л.с. 1500 кубовых двигателей автомобилей Формулы 1 1981 года, что означает отдачу от 0,86 до 0,93 л.с. с одного кубического сантиметра рабочего объема.

Однако у потенциального пользователя турбонаддува остается много вопросов, ответы на которые покажут, почему турбонаддув в равной степени полезен автомобильному энтузиасту, который использует автомобиль для повседневной езды, спортсмену, и даже уличному гонщику. Почему турбонаддув дает больший прирост мощности, чем другие способы модернизации двигателя? Потенциал повышения мощности двигателя от применения любого компрессора измеряется количеством воздуха, нагнетаемого устройством с учётом потерь мощности, затрачиваемой на привод, а так же на нагрев воздуха в процессе сжатия. Хотя может показаться, что турбонагнетатель не использует мощность двигателя, так как энергия выхлопа так или иначе будет потеряна, это далеко не так. Поток горячих выхлопных газов приводит во вращение турбину. Уменьшенные проходные сечения, свойственные ее конструкции, создают этим газам противодавление. Это вызывает некоторые потери мощности двигателя, которые не возникли бы, если бы турбонагнетатель получал энергию от другого её источника, а не от двигателя, который в нашем случае выступает в роли насоса. Потеря мощности увеличивается при уменьшении размера турбонагнетателя, потому что турбина меньшего размера создает большее противодавление. Напротив, большие турбины создают намного меньшее противодавление, и поэтому потерн мощности меньше.

И всё же затраты мощности на привод нагнетателя, свойственные двигателю с турбиной, существенно меньше, чем потери, возникающие при использовании приводного компрессора с ремнем или другим механическим приводом. То, что нагнетатель всегда нагревает сжимаемый воздух, является термодинамическим фактом, от которого мы не можем отмахнуться. Различные виды нагнетателей нагревают воздух в разной степени при одинаковых расходах газа и степенях сжатия. В значительной степени это зависит от КПД различных типов насосов. Классический компрессор типа Рутс обычно имеет КПД приблизительно 50 % при том, что турбонагнетатель имеет КПД в районе 70%. Чем выше эффективность (КПД), тем меньше нагрев воздуха. Эффективность имеет первостепенное значение для настоящих энтузиастов мощности, так как повышенная температура воздуха на впуске — враг для высоких характеристик двигателя. При высокой температуре плотность воздуха меньше, таким образом, двигатель фактически потребляет меньшее количество воздуха при более высокой температуре, даже при неизменном давлении. Второй проблемой является то, что более высокие температуры способствуют разрушительно воздействующей на двигатель детонации топливовоздушной смеси.

Что такое в автомобиле турбонаддув


Турбонаддув — Википедия

Турбонаддув — один из методов агрегатного наддува, основанный на использовании энергии отработавших газов. Основной элемент системы — турбокомпрессор.

Принцип турбонаддува был запатентован Альфредом Бюхи в 1911 году в патентном ведомстве США[1].

История развития турбокомпрессоров началась примерно в то же время, что и постройка первых образцов двигателей внутреннего сгорания. В 1885—1896 г. Готлиб Даймлер и Рудольф Дизель проводили исследования в области повышения вырабатываемой мощности и снижения потребления топлива путём сжатия воздуха, нагнетаемого в камеру сгорания. В 1905 г. швейцарский инженер Альфред Бюхи впервые успешно осуществил нагнетание при помощи выхлопных газов, получив при этом увеличение мощности до 120 %. Это событие положило начало постепенному развитию и внедрению в жизнь турботехнологий.

Сфера использования первых турбокомпрессоров ограничивалась чрезвычайно крупными двигателями, в частности, корабельными. В авиации с некоторым успехом турбокомпрессоры использовались на истребителях с двигателями Рено ещё во время Первой Мировой войны. Ко второй половине 1930-х развитие технологий позволило создавать действительно удачные авиационные турбонагнетатели, которые у значительно форсированных двигателей использовались в основном для повышения высотности. Наибольших успехов в этом достигли американцы, установив турбонагнетатели на истребители P-38 и бомбардировщики B-17 в 1938 году. В 1941 году США был создан истребитель P-47 с турбонагнетателем, обеспечившим ему выдающиеся летные характеристики на больших высотах.

В автомобильной сфере первыми начали использовать турбокомпрессоры производители грузовых машин. В 1938 г. на заводе «Swiss Machine Works Sauer» был построен первый турбодвигатель для грузового автомобиля. Первыми массовыми легковыми автомобилями, оснащенными турбинами, были Chevrolet Corvair Monza и Oldsmobile Jetfire, вышедшие на американский рынок в 1962—1963 г. Несмотря на очевидные технические преимущества, низкий уровень надежности привел к быстрому исчезновению этих моделей.

Начало использования турбодвигателей на спортивных автомобилях, в частности, на Formula 1, в 70-х годах привело к значительному увеличению популярности турбокомпрессоров. Приставка «турбо» стала входить в моду. В то время почти все производители автомобилей предлагали как минимум одну модель с бензиновым турбодвигателем. Однако, по прошествии нескольких лет мода на турбодвигатели начала проходить, так как выяснилось, что турбокомпрессор, хотя и позволяет увеличить мощность бензинового двигателя, сильно увеличивает расход топлива. На первых порах задержка в реакции турбокомпрессора была достаточно большой, что также являлось серьёзным аргументом против установки турбины на бензиновый двигатель.

Коренной перелом в развитии турбокомпрессоров произошёл с установкой в 1977 г. турбокомпрессора на серийный автомобиль Saab 99 Turbo и затем в 1978 г. выпуском Mercedes-Benz 300 SD, первого легкового автомобиля, оснащенного дизельным турбодвигателем. В 1981 г. за Mercedes-Benz 300 SD последовал VW Turbodiesel, сохранив при этом значительно более низкий уровень расхода топлива. Вообще, дизельные двигатели имеют повышенную степень сжатия и, вследствие адиабатного расширения на рабочем ходу, их выхлопные газы имеют более низкую температуру. Это снижает требования к жаропрочности турбины и позволяет делать более дешёвые или более изощрённые конструкции. Именно поэтому турбины на дизельных двигателях встречаются гораздо чаще, чем на бензиновых, а большая часть новинок (например, турбины с изменяемой геометрией) сначала появляется именно на дизельных двигателях.

Принцип работы основан на использовании энергии отработавших газов. Поток выхлопных газов попадает на крыльчатку турбины (закреплённой на валу), тем самым раскручивая её и находящиеся на одном валу с нею лопасти компрессора, нагнетающего воздух в цилиндры двигателя. Так как при использовании наддува воздух в цилиндры подаётся принудительно (под давлением), а не только за счёт разрежения, создаваемого поршнем (это разрежение способно взять только определённое количество смеси воздуха с топливом), то в двигатель попадает большее количество смеси воздуха с топливом. Как следствие, при сгорании увеличивается объём сгораемого топлива с воздухом, образовавшийся газ находится под большим давлением и соответственно возникает большая сила, давящая на поршень.[ стиль]

Как правило, у турбодвигателей меньше удельный эффективный расход топлива (грамм на киловатт-час, г/(кВт·ч)) и выше литровая мощность (мощность, снимаемая с единицы объёма двигателя — кВт/л), что даёт возможность увеличить мощность небольшого мотора без увеличения оборотов двигателя.

Вследствие увеличения массы воздуха, сжимаемой в цилиндрах, температура в конце такта сжатия заметно увеличивается и возникает вероятность детонации. Поэтому конструкцией турбодвигателей предусмотрена пониженная степень сжатия, применяются высокооктановые марки топлива, предусмотрен промежуточный охладитель наддувочного воздуха (интеркулер), представляющий собой радиатор для охлаждения воздуха. Уменьшение температуры воздуха требуется также и для того, чтобы плотность его не снижалась вследствие нагрева от сжатия после турбины, иначе эффективность всей системы значительно упадёт.[стиль]Турбонаддув особенно эффективен в дизельных двигателях тяжёлых грузовых автомобилей. Он повышает мощность и крутящий момент при незначительном увеличении расхода топлива.[источник не указан 474 дня] Находит применение турбонаддув с изменяемой геометрией лопаток турбины в зависимости от режима работы двигателя.

Наиболее мощные (по отношению к мощности двигателя) турбокомпрессоры применяются на тепловозных двигателях. Например, на дизеле Д49 мощностью 4000 л.с. установлен турбокомпрессор мощностью 1100 л.с.[источник не указан 474 дня]

Наибольшей (по абсолютной величине) мощностью обладают турбокомпрессоры судовых двигателей, которая достигает нескольких десятков тысяч киловатт (двигатели MAN B&W). [источник не указан 474 дня]

Кроме турбокомпрессора и интеркулера в систему входят: регулировочный клапан (wastegate) (для поддержания заданного давления в системе и сброса давления в приёмную трубу), перепускной клапан (bypass valve — для отвода наддувочного воздуха обратно во впускные патрубки до турбины в случае закрытия дроссельной заслонки) и/или «стравливающий» клапан (blow-off valve — для сброса наддувочного воздуха в атмосферу с характерным звуком, в случае закрытия дроссельной заслонки, при условии отсутствия датчика массового расхода воздуха), выпускной коллектор, совместимый с турбокомпрессором, или кастомный даунпайп, а также герметичные патрубки: воздушные для подачи воздуха во впуск, масляные для охлаждения и смазки турбокомпрессора.

Задержка турбокомпрессора («турбояма») — это время, необходимое для изменения выходной мощности после изменения состояния дроссельной заслонки, проявляющееся в виде замедленной реакции на открытие дроссельной заслонки по сравнению с поведением безнаддувного двигателя. Это связано с тем, что выхлопной системе и турбонагнетателю требуется время для раскрутки, чтоб обеспечить требуемый поток нагнетаемого воздуха. Инерция, трение и нагрузка на компрессор являются основными причинами задержки турбокомпрессора.

ru.wikipedia.org

Что такое турбонаддув — ДРАЙВ

  • Войти
  • Регистрация
  • Забыли пароль?
Найти ДРАЙВ
  • Наши
    тест-драйвы
  • Наши
    видео
  • Цены и
    комплектации
  • Сообщество
    DRIVE2
  • Новости
  • Наши тест-драйвы
  • Наши видео
  • Поиск по сайту
  • Полная версия сайта
  • Войти
  • Выйти
  • Acura
  • Alfa Romeo
  • Aston Martin
  • Audi
  • Bentley
  • Bilenkin Classic Cars
  • BMW
  • Brilliance
  • Cadillac
  • Changan
  • Chery
  • Chevrolet
  • Chrysler
  • Citroen
  • Daewoo
  • Datsun
  • Dodge
  • Dongfeng
  • DS
  • FAW
  • Ferrari
  • FIAT
  • Ford
  • Foton
  • GAC
  • Geely
  • Genesis
  • Great Wall
  • Haima
  • Haval
  • Hawtai
  • Honda
  • Hummer
  • Hyundai
  • Infiniti
  • Isuzu
  • JAC
  • Jaguar
  • Jeep
  • KIA
  • Lada
  • Lamborghini
  • Land Rover
  • Lexus
  • Lifan
  • Maserati
  • Mazda
  • Mercedes-Benz
  • MINI
  • Mitsubishi
  • Nissan
  • Opel
  • Peugeot
  • Porsche
  • Ravon
  • Renault
  • Rolls-Royce
  • Saab
  • SEAT
  • Skoda
  • Smart
  • SsangYong
  • Subaru
  • Suzuki
  • Tesla
  • Toyota
  • Volkswagen
  • Volvo
  • Zotye
  • УАЗ
  • Kunst!
  • Тесты шин
  • Шпионерия
  • Автомобизнес
  • Техника
  • Наши дороги
  • Гостиная
  • Автоспорт
  • Авторские колонки
  • Acura
  • Alfa Romeo
  • Aston Martin
  • Audi
  • Bentley
  • BCC
  • BMW
  • Brilliance
  • Cadillac
  • Changan
  • Chery
  • Chevrolet
  • Chrysler
  • Citroen
  • Daewoo
  • Datsun
  • Dodge
  • Dongfeng
  • DS
  • FAW
  • Ferrari
  • FIAT
  • Ford
  • Foton
  • GAC
  • Geely
  • Genesis
  • Great Wall
  • Haima
  • Haval
  • Hawtai
  • Honda
  • Hummer
  • Hyundai
  • Infiniti
  • Isuzu
  • JAC
  • Jaguar
  • Jeep
  • KIA
  • Lada
  • Lamborghini
  • Land Rover
  • Lexus
  • Lifan
  • Maserati
  • Mazda
  • Mercedes-Benz
  • MINI
  • Mitsubishi
  • Nissan
  • Opel
  • Peugeot
  • Porsche
  • Ravon
  • Renault
  • Rolls-Royce
  • Saab
  • SEAT
  • Skoda
  • Smart
  • SsangYong
  • Subaru
  • Suzuki
  • Tesla
  • Toyota
  • Volkswagen
  • Volvo
  • Zotye
  • УАЗ

www.drive.ru

Турбонаддув. Есть Плюсы и Минусы — DRIVE2

Двигатель с турбонаддувом. Есть Плюсы и Минусы

Турбонаддув является наиболее эффективной системой повышения мощности двигателя. Помимо повышения мощности турбонаддув обеспечивает экономию топлива и снижение токсичности отработавших газов. В данной статье мы рассмотрим бензиновый и дизельный двигатель с турбонаддувом, а также принцип работы и всего его плюсы и минусы.

Что такое турбонаддув?
Турбонаддув — вид наддува, при котором воздух в цилиндры двигателя подается под давлением за счет использования энергии отработавших газов.

Турбонаддув применяется как на бензиновых, так и на дизельных двигателях. Вместе с тем, наиболее эффективен турбонаддув на дизелях вследствие высокой степени сжатия двигателя и относительно невысокой частоты вращения коленчатого вала. Сдерживающими факторами применения турбонаддува на бензиновых двигателях являются возможность наступления детонации, которая связана с резким увеличением частоты вращения двигателя, а также высокая температура отработавших газов и соответствующий нагрев турбонагнетателя.

Отличительной особенностью двигателя с турбонаддувом является наличие: турбокомпрессора, интеркулера, регулятора давления наддува, предохранительного клапана и других элементов.

Турбокомпрессор — является основным конструктивным элементом турбонаддува и обеспечивает повышение давления воздуха во впускной системе.

Интеркулер предназначен для охлаждения сжатого воздуха. За счет охлаждения сжатого воздуха повышается его плотность и увеличивается давление. Интеркулер представляет собой радиатор воздушного или жидкостного типа.

Основным элементом управления системы турбонаддува является регулятор давления наддува, который представляет собой перепускной клапан. Клапан ограничивает энергию отработавших газов, направляя их часть в обход турбинного колеса, тем самым обеспечивает оптимальное давление наддува. Клапан имеет пневматический или электрический привод. Срабатывание перепускного клапана производится на основании сигналов датчика давления наддува.

Также может устанавливаться предохранительный клапан. Он защищает системы от скачка давления воздуха, который может произойти при резком закрытии дроссельной заслонки. Избыточное давление может стравливаться в атмосферу с помощью блуофф-клапана или перепускаться на вход компрессора с помощью байпас-клапана.

Принцип работы двигателя с турбонаддувом
Работа системы турбонаддува основана на использовании энергии отработавших газов. Отработавшие газы вращают турбинное колесо, которое через вал ротора вращает компрессорное колесо. Компрессорное колесо сжимает воздух и нагнетает его в систему. Нагретый при сжатии воздух охлаждается в интеркулере и поступает в цилиндры двигателя.

Несмотря на то, что турбонаддув не имеет жесткой связи с коленчатым валом двигателя, эффективность работы системы во многом зависит от числа оборотов двигателя. Чем выше частота вращения коленчатого вала двигателя, тем выше энергия отработавших газов, быстрее вращается турбина, больше сжатого воздуха поступает в цилиндры двигателя.

В силу конструкции, турбонаддув имеет ряд негативных особенностей, среди которых с одной стороны задержка увеличения мощности двигателя при резком нажатии на педаль газа — турбояма, с другой — резкое увеличение давления наддува после преодоления турбоямы — турбоподхват.

Система с двумя параллельными турбокомпрессорами применяется в основном на мощных V-образных двигателях (по одному на каждый ряд цилиндров). Принцип работы системы основан на том, что две маленькие турбины обладают меньшей инерцией, чем одна большая.

При установке на двигатель двух последовательных турбин максимальная производительность системы достигается за счет использования разных турбокомпрессоров на разных оборотах двигателя. Некоторые производители идут еще дальше и устанавливают три последовательных турбокомпрессора — triple-turbo и даже четыре турбокомпрессора — quad-turbo.

Комбинированный наддув объединяет механический и турбонаддув. На низких оборотах коленчатого вала двигателя сжатие воздуха обеспечивает механический нагнетатель. С ростом оборотов подхватывает турбокомпрессор, а механический нагнетатель отключается. Примером такой системы является двойной наддув моторов TSI от Volkswagen.

Минусы двигателя с турбонаддувом
О плюсах мы поговорили в начале статьи, теперь расскажем про минусы двигателя с турбонаддувом. Обратная сторона повышения мощности мотора при сохранении общих характеристик, то есть форсирования, – более интенсивный износ узлов, как следствие, снижение ресурса силовой установки. Кроме того, турбины требуют применения специальных сортов моторных масел и строгого соблюдения рекомендуемых изготовителем сроков обслуживания. Еще более требователен к вниманию владельца воздушный фильтр.

Еще один явный недостаток системы турбонаддува – она очень чувствительна к износу поршневой группы. Возрастание давления картерных газов ощутимо снижает ресурс турбины. При продолжительной работе в таких условиях наступает «масляное голодание» и поломка турбокомпрессора. Причем повреждение этого агрегата вполне может привести к выходу из строя всего двигателя.

Наличие технически сложного турбонаддува двигателя делает мотор автомобиля более сложным, увеличивая число деталей, а значит, снижая общую надежность. К тому же, ресурс самого турбокомпрессора значительно меньше, чем аналогичный показатель двигателя в целом.

Источник vk.com/pubauto ! ВСЕМ МИРА И ДОБРА !

www.drive2.ru

что это такое в автомобиле, принцип работы, плюсы и минусы

В массовом сознании слова «турбо», «турбонаддув», «турбированный двигатель» прочно ассоциируются со спортивными машинами и мощными двигателями. При этом, немногие представляют себе устройство и принцип работы турбонаддува. Хотя ничего особенного сложного в нём нет.

Что такое турбонаддув в автомобиле

Турбонаддув это специальная система, которая закачивает (наддувает) дополнительный воздух в цилиндры двигателя. Такая система используется не только в автомобильных двигателях, но и в авиационных, тепловозных, корабельных, и многих других. Широкое распространение турбонаддува вызвано тем, что это очень простой и дешёвый способ повышения мощности двигателя. Турбировать можно почти любой автомобильный двигатель, даже если это изначально не предусмотрено конструкцией.

Устройство турбонаддува относительно простое:

  • турбокомпрессор;
  • охладитель воздуха;
  • набор патрубков;
  • выпускной коллектор;
  • ряд датчиков и клапанов.

Полный комплект не занимает много места, его установка не требует серьезной переработки силового агрегата. Поэтому поставить турбонаддув на свою машину может любой желающий. Цены на турбосистемы сильно разнятся, в зависимости от мощности, эффективности, фирмы-производителя.

Принцип работы турбонаддува

Принцип работы турбонаддува достаточно прост. Выхлопные газы, которые выбрасывает двигатель, попадают на турбину и придают ей вращение. Турбина, в свою очередь, передаёт крутящий момент компрессору, он засасывает воздух и сжимает его. После этого сжатый воздух направляется в цилиндры двигателя. Опционально в эту схему вносится промежуточный охладитель воздуха — интеркулер. Он снижает температуру сжатого компрессором воздуха, соответственно уменьшая его объём. Это избавляет от неприятных эффектов вроде детонации, и повышает общую эффективность системы.

Смысл закачивания дополнительного воздуха становится ясен, если вспомнить принцип работы двигателя внутреннего сгорания. В его цилиндрах сгорает топливо-воздушная смесь, этот процесс толкает поршень, который проворачивает коленвал. Но, для эффективного сгорания смеси важно соблюдать правильное соотношение топлива и воздуха, поэтому нельзя повысить мощность просто добавив в смесь больше топлива. Вместе с увеличением количества топлива нужно увеличивать и количество воздуха.

Это можно сделать увеличив объём цилиндра, чтобы в него помещалось побольше воздуха. Но можно пойти другим путём — повысить плотность воздуха, загоняемого в цилиндры. Тогда с той же единицы рабочего объёма двигателя можно снимать ощутимо большую мощность. Хороший пример — спорткары, где каждый литр объёма может выдавать более 150 л.с. Конечно, помимо турбонаддува там используют ещё массу ухищрений. Но вполне реально получить 105-115 л.с. на литр с помощью одного только турбирования. 

Что такое турбояма или турболаг

Принцип работы турбонаддува заключается в том, что двигатель «разгоняет» себя за счёт своей же работы. Эта особенность вызывает появление такой проблемы как турбояма или турболаг. Она проявляется в виде провала мощности, который появляется после резкого нажатия на педаль газа.

На заре турбированных моторов доходило до смешного — слишком резко и сильно нажав на педаль «газа», можно было полностью заглушить его. Сейчас сложная механическая и электронная начинка не даст этому произойти, но эффект турбоямы с неприятным провалом мощности всё равно остаётся. Особенно этим страдают дешевыё турбо-системы или неправильно установленные и настроенные.

Чтобы сгладить турболаг, используют хитрые электронные системы упреждающего наращивания оборотов. Они регистрируют резкие нажатия на педаль акселератора и раскручивают компрессор электроприводами, не дожидаясь, когда «проснётся» турбина. Цена таких решений, как правило, немаленькая, поэтому они встречаются в осномном только на спортивных авто. 

Плюсы и минусы турбонаддува

Использовать турбонаддув имеет смысл только в том случае, если крайне необходимо придать автомобилю более динамичный, спортивный характер. Это действительно отличный способ минимальными затратами повысить мощность двигателя. Турбирование увеличивает максимальную скорость машины и улучшает ее динамику.

При этом турбонаддув позволяет обходиться меньшим объемом топлива по сравнению с двигателем такой же мощности и большего объёма. На эту деталь нужно обратить самое пристальное внимание, так как сам по себе турбонаддув не уменьшает, а увеличивает расход топлива. Потому что при росте количества воздуха в цилиндрах нужно соответствующе нарастить подачу топлива.

Помимо увеличенного расхода горючего, турбонаддув имеет следующие недостатки:

  • турбокомпрессор вращается на огромных оборотах и сильно нагревается, что отрицательно сказывается на его долговечности;
  • непредусмотренное изначально увеличение мощности усиливает износ всех частей двигателя;
  • турбонаддув предъявляет повышенные требования к качеству топлива и моторных масел;
  • турбирование включает в себя изменения настроек работы двигателя, фаз газораспределения;

Похожие статьи

avtonov.com

ЧТО ТАКОЕ ТУРБИНА И КАК РАБОТАЕТ ТУРБО МОТОР Часть 1. — DRIVE2

Основы турбо-наддува. Часть 1.

Основные принципы работы турбо двигателя.

Как известно, мощность двигателя пропорциональна количеству топливо-воздушной смеси попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем двигатель меньшего объема. Если нам требуется что бы маленький двигатель выдавал мощности как большой или мы просто хотим что бы большой выдавал еще больше мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого двигателя. Естественно, мы можем доработать головку блока и установить спортивные распредвалы, уеличив продувку и количество воздуха в цилиндрах на высоких оборотах. Мы даже можем оставить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высокий октан топлива, тем самым подняв КПД системы. Все эти способы действенны и работают в случае когда требуемое увеличение мощности составляет 10-20%. Но когда нам нужно кардинально изменить мощность мотора — самым эффективным методом будет использование турбокомпрессора.

Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взгянем на приведенную ниже диаграмму:

Рассмотрим основные этапы прохождения воздуха в двигателе с турбокомпрессором:

— воздух проходит через воздушный фильтр (не показан на схеме) и попадает на вход турбокомпрессора (1)
— внутри турбокомпрессора вошедший воздух сжимается и при этом увеличивается количество кислорода в единице объема воздуха. Побочным эффектом любого процесса сжатия воздуха является его нагрев, что несколько снижает его плотность.
— Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что кроме увеличения плотности воздуха ведет еще и к меньшей склонности к детонации нашей будущей топливо-воздушной смеси.
— После прохождения интеркулера воздух проходит через дросеель, попадает во впускной коллектор (4) и дальше на такте впуска — в цилиндры нашего двигателя.
Объем цилиндра является фиксированной величиной, обусловленной его диаметром и ходом поршня, но так как теперь он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится значительно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет сжечь большее количество топлива за такт, а сгорание большего количества топлива ведет к увеличению мощности выдаваемой двигателем.
— После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллекторе (5) где этот поток горячего (500С-1100С) газа попадает в турбину (6)
— Проходя через турбину поток выхлопных газов вращает вал турбины на другой стороне которого находится компрессор и тем самым совершает работу по сжатию очередной порции воздуха. При этом происходит падение давления и температуры выхлопного газа, поскольку часть его энергии ушла на обеспечение работу компрессора через вал турбины.

Ниже приведена схема внутреннего устройства турбокомпрессора:

В зависимоти от конкретного мотора и его компоновки под капотом, турбокомпрессор может иметь дополнительные встроенные элементы, такие как Wastegate и Blow-Off. Рассмотрим их подробнее:

Blow-off
Блоуофф (перепускной клапан) это устройство установленное в воздушной системе между выходом из компрессора и дроссельной заслонкой с целью недопустить выход компрессора на режим surge. В моменты когда дроссель резко закрывается, скорость потока и расход воздуха в системе резко падает, при этом турбина еще некоторое время продолжает вращаться по инерции со скоростью не соответствующей новому упавшему расходу воздуха. Это вызывает циклические скачки давления за компрессором и слышимый характерный звук прорывающегося через компрессор воздуха. Surge со временем приводит к выходу из строя опорных подшипников турбины, в виду значительной наргрузки на них в этих переходных режимах. БлоуОфф использует комбинацию давлений в коллекторе и установленной в нем пружины что бы определить момент закрытия дросселя. В случае резкого закрытия дросселя блоуофф сбрасывает в атмосферу, возникающий в воздушном тракте избыток давления и тем самым спасает турбокомпрессор от повреждения.

Wastegate:
Представляет собой механический клапан устанавленный на турбинной части или на выпускном коллекторе и обеспечивающий контроль за создаваемым турбокомпрессором давлением. Некоторые дизельние моторы используют турбины без вейстгейтов. Тем не менее подавляющее большинство бензиновых моторов обязательно требуют его наличия. Основной задачей вейстгейта является обеспечивать выхлопным газам возможность выхода из системы в обход турбины. Пуская часть газов в обход турбины, мы контролируем количество энергии газов которое уходит через вал на компрессор и тем самым управляем давлением наддува, создаваемое компрессором. Как правило вейстгейт использует давление наддува и давление встроенной пружины что бы контролировать обходной поток выхлопных газов.
Встроенный вейстгейт состоит из заслонки встроенной в турбинный хаузинг (улитку), пневматического актуатора и тяги от актуатора к заслонке.
Внешний гейт представляет собой клапан устанавливаемый на выпускной коллектор до турбины. Преимуществом внешнего гейта является то, что сбрасываемый им обходной поток может быть возвращен в выхлопную систему далеко от выхода из турбины или вообще сброшен в атмосферу на спортивных автомобилях. Все это ведет к улучшению прохождения газов через турбину в виду отсутствия разнонаправленных потоков в компактном объеме турбинного хаузинга.

Водяное и маслянное обеспечение:
Шарикоподшипниковые турбины Garrett требуют значительно меньше масла чем втулочные аналоги. Поэтому установка маслянного рестриктора на входе в турбину крайне рекомендована если давление масла в вашей системе привышает 4 атм. Слив масла должен быть заведен в поддон выше уровня масла. Поскольку слив масла из турбины происходит естественным путем под действием гравитации, крайне важно что бы центральный картридж турбины был ориентирован сливом масла вниз.
Частой причиной выхода из строя турбин является закоксовка маслом в центральном картридже. Быстрая остановка мотора после больших продолжительных нагрузок ведет к теплообмену между турбиной и нагретым выпускным коллектором, что в отсутствии притока свежего масла и поступления холодного воздуха в компрессор ведет к общему перегреву картриджа и закоксовке имеющегося в нем масла.
Для минимизации этого эффекта турбины снабдили водяным охлаждением. Водные шланги обеспечивают эффект сифона снижая температуру в центральном картридже даже после остановки двигателя, когда нет принудительной циркуляции воды. Желательно так же обеспечить минимум неравномерности по вертикали линии подачи воды, а так же несколько развернуть центральный картридж вокруг оси турбины на угол до 25 градусов.

Выбор турбины.

Правильный подбор турбины является ключевым моментом в постройке турбо-мотора и основан на многих вводных данных. Самым основным фактом выбора является требуемая от мотора мощность. Важно также выбирать эту цифру максимально реалистично для вашего мотора. Поскольку мощность мотора зависит от количества топливо-воздушной смеси которая через него проходит за единицу времени, опредлив целевую мощность мы приступим к выбору турбины способной обеспечить необходимый для этой мощности поток воздуха.

Другим крайне важным фактором выбора турбины является скорость ее выхода на наддув и минимальные обороты двигателя на которых это происходит. Меньшая турбина или меньший горячий хаузинг позволяют улучшить эти показатели, но максимальная мощность при этом будет снижена. Тем не менее за счет большего рабочего диапазона работы двигателя и быстрого выход турбины на наддув при открытии дросселя в целом результат может быть значительно лучше, чем при использовании большей турбины с большой пиковой мощностью, но в узком верхнем диапазоне работы мотора.

Втулочные и шарикоподшипниковые турбины.
Втулочные турбины были самыми распространенными в течении долгого времени, тем не менее новые и более эффективные шарикоподшипниковые турбины используются все чаще. Шарикоподшипниковые турбины появились как результат работы Garrett Motorsport во многих гоночных сериях.
Отзывчивость турбины на дроссель очень зависит от конструкции центрального картриджа. Шарикоподшипниковые турбины Garrett обеспечивают на 15% более быстрый выход на наддув относительно их втулочных аналогов, снижая эффект турбо-ямы и приближая ощущение от турбо-мотора к атмосферному большеобъемнику.
Шарикоподшипниковые турбины так же требуют значительно меньшего потока масла через картридж для смазки пошипников. Это снижает вероятность утечек масла через сальники. Так же такие турбины менее требовательны к качеству масла и менее склонны к закоксовке после глушения двигателя.

www.drive2.ru

Что такое турбонаддув … — DRIVE2

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.
Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.

Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.
Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.
Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Buchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.
Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

А вот так выглядит интеркулер.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.
Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно. Бывают и более изощрённые конструкции. Например, инженеры придумали устанавливать на мотор не одну, а две турбины. Одна работает на маленьких оборотах двигателя, создавая тягу на «низах», а вторая включается позже. Такое решение получило название twin-turbo и позволило убить сразу двух зайцев — и турбояму, и проблему нехватки мощности. В конце минувшего века автомобили с последовательной схемой подключения турбин имели некоторую популярность, их выпускали Nissan, Toyota, Mazda и даже Porsche. Однако в силу сложности конструкции век таких аппаратов оказался недолог, и распространение получили другие идеи. Например, параллельный турбонаддув, или biturbo. То есть вместо одной турбины ставят две маленькие одинаковые турбины, которые работают независимо друг от друга. Идея такова: чем меньше турбина, тем быстрее она раскручивается, тем более «отзывчивым» получается двигатель. Как правило, две маленькие турбины ставили на V-образные двигатели, по одной на каждую «половинку».
Ещё один вариант — турбины с двумя «улитками», или twin-scroll. Одна из них (чуть большего размера) принимает выхлопные газы от одной половины цилиндров двигателя, вторая (чуть меньшего размера) — от второй половины цилиндров. Обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

Но и на этом конструкторы не успокоились. Естественно, чем городить две турбины, гораздо проще обойтись одной. Надо только сделать так, чтобы турбина одинаково эффективно работала во всём диапазоне оборотов. Так появились турбины с изменяемой геометрией. Здесь и начинается самое интересное. В зависимости от оборотов поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появилис

www.drive2.ru

Hyundai Tiburon 2.0 турбо › Бортжурнал › Что такое турбонагнетатель давления в двигателе, как он работает.

Что такое турбонагнетатель давления в двигателе,
как он работает.

Так что же такое турбонагнетатель или турбокомпрессор? Фактически это тот же компрессор, призванный нагнетать воздух, но его привод осуществляется не от коленчатого вала через ременную передачу, а используя энергию потока отработавших газов.
Работа турбонагнетателя предельно проста. Выхлопные газы, проходя в турбину, приводят во вращение ротор. Колесо центробежного компрессора жестко закреплено на оси ротора и вращается с той же скоростью. Нужно сразу сказать, что сама компрессорная часть может быть различной по конструкции, но именно центробежный тип стал превалирующим. Чем большей энергией обладают выхлопные газы, тем быстрее вращаются колеса турбины и, соответственно, компрессоры. Чем больше воздуха подается в цилиндры, тем больше топлива может сгореть, тем выше мощность. При этом частота вращения турбокомпрессора может быть очень и очень высокой – 150 тыс. об/мин и более. Колесо турбины соединено с валом сваркой трением. Использование иных методов не дает необходимой точности соединения.
Дело в том, что конструкция вал–турбина должна быть идеально сбалансирована. Иначе, памятуя о высоких скоростях крыльчатки, даже небольшое биение приведет к гарантированной поломке. Вал в месте соединения с колесом обычно выполняется пустотелым. Этот прием позволяет понизить теплоотдачу от колеса турбины на вал и предотвратить нежелательный перегрев подшипников. К слову, о подшипниках. Так уж получается, что колесо турбины, подвергаясь прямому воздействию горячих отработавших газов, не несет столь большой тепловой и, особенно, механической нагрузки, какую испытывает вал. Турбокомпрессоры выполняют по нескольким конструктивным схемам. И в основном отличия этих подходов сводятся к размещению опор крепления вала. В турбонагнетателях именно вал и опоры являются крайне уязвимым звеном.
Подвергаясь воздействию высоких температур от выхлопных газов и серьезным механическим нагрузкам, обусловленным высокими скоростями вращения роторов, эти опоры представляют серьезную проблему для разработчиков. Сейчас можно встретить схемы с подшипниками качения, но наибольшее распространение получили подшипники скольжения (например, бронзовые втулки и т. п.). Как правило, втулки выполняют плавающими (т. е. с зазором и относительно корпуса, и относительно самого вала). Это позволяет поддерживать необходимый масляный клин и сократить внутренние линейные скорости вращения, что ведет к снижению нагрузок на весь подшипниковый узел. Смазка подшипникового узла осуществляется от системы смазки ДВС. Причем, как и в самом двигателе, масло служит даже больше для отвода тепла от подшипников и корпуса, нежели для непосредственно смазки трущихся поверхностей.
Удержание масла внутри подшипникового узла и недопущение его в зоны компрессора и турбины также важный и сложный вопрос. Тем более, что сейчас можно встретить конструкции с неподвижным подшипником, где ротор вращается в масляной ванне. Различные типы газо-масляных уплотнений не только должны эффективно сдерживать масло, но и противостоять воздействию высоких температур. На малых оборотах проблема утечек масла встает более остро, поскольку на этих режимах уже внутри подшипникового узла давление более высокое.
Сегодня большинство турбокомпрессоров имеют механизм изменения геометрии турбины, дополнительное кольцо с управляемыми направляющими лопатками позволяет поддерживать поток выхлопных газов не только постоянным, но и управлять им. Так, на низких оборотах, когда поток невелик, поперечное сечение турбины уменьшается, что увеличивает скорость газов, поступающих на колесо, повышая ее мощность. На высоких же оборотах лопасти полностью открывают вход газам, увеличивая пропускную способность турбины. Такое гибкое управление позволяет не только расширить диапазон эффективной работы турбонагнетателя, но и существенно снизить потребление топлива и вредные выбросы.
Еще одно интересное конструктивное решение касается корпуса турбины. В основном такие турбины применяются на больших двигателях грузовых автомобилей, но теперь их все чаще можно встретить и на легковых машинах. Речь идет о корпусе турбины с двумя параллельными каналами. Дело в том, что поток выхлопных газов неравномерен. Четыре такта работы ДВС подразумевают поочередную работу цилиндров, что делает поток отработавших газов импульсным. Эти колебания давления могут перекрывать друг друга, что способно снизить эффективность турбины. Два параллельных канала позволяют разделить потоки от разных цилиндров (например, на один канал работают 1-й и 4-й цилиндры, а на второй – 2-й и 3-й). Каждый поток распределяется по всей поверхности рабочего колеса турбины, полностью используя импульсы давления. Такой тип наддува называется ипульсным. Здесь уместно вспомнить конструкции прошлых лет, чтобы увидеть, по какому извилистому пути шла мысль конструкторов-первопроходцев. Так, например, пытаясь максимально использовать энергию выхлопных газов, применяли дополнительную турбину. В то время как часть отработавших газов направлялась в турбину нагнетателя, вторая их часть вращала турбину, отдающую свою мощность непосредственно коленчатому валу двигателя. Такая комбинированная установка позволяла выдавать довольно большую мощность, но, вероятно, сложность самой конструкции не способствовала широкому ее распространению.
Другая идея еще более экстравагантна, но, тем не менее, весьма показательна для того времени. Предлагались проекты силовых установок для гоночных автомобилей, в которых двухтактный двигатель вырабатывал газ для тяговой турбины. Кстати, газотурбинные двигатели некоторое время использовались в гонках, пока их не запретили из-за того, что дальнейшее широкое использование вертолетных силовых установок могло привести к полному вытеснению поршневых двигателей, что окончательно отделило бы автоспорт от автопромышленности.
Турбонагнетатель с изменяемой геометрией турбины обеспечивает ему эффективную работу не только на высоких, но и на низких оборотах двигателя
Плюсы и минусы
Самое большое преимущество такого привода для нагнетания воздуха в том, что, в отличие от механических нагнетателей, приводимых от коленчатого вала, а стало быть, отнимающих мощность непосредственно у двигателя, турбонагнетатели используют фактически дармовую энергию, которая в обычном двигателе попросту выбрасывается из выхлопной трубы. Это делает турбонагнетатели более эффективными, нежели механические. Так, средние приблизительные оценки показывают, что турбонагнетатели отбирают у двигателя 1,5% мощности, в то время как центробежные механические нагнетатели – порядка 5% ( рутс-типа и того больше).
Одновременно турбонаддув позволяет получить очень высокие литровые мощности – свыше 300 л. с. с одного литра объема. Двигатель с турбонагнетателем может иметь мощность на 40% выше, чем без него. Как ни странно, но турбированные двигатели более экономичны. Низкое КПД двигателя внутреннего сгорание обусловливается потерями на трение и низкой тепловой эффективностью (теряется много тепла ). С увеличением размеров мотора эти потери резко увеличиваются. Небольшие турбированные моторы в этой связи более предпочтительны.
Ну и еще можно выделить такую положительную черту, как более устойчивая работа наддувных моторов в условиях высокогорья, где обычным атмосферникам подчас не хватает воздуха.
Складывая все вышеперечисленные преимущества, логичен вывод, что использование турбонагнетателей на спортивных автомобилях позволяет добиться очень высоких результатов, тогда как классических методов форсировки уже недостаточно. Здесь уместно также упомянуть и о весовой составляющей. По определению маленький мотор весит меньше большого, что крайне важно для автоспорта (хотя, именно там их использование запрещено).
Но в любой бочке меда есть и своя ложка дегтя. Турбонагнетатели несовершенны и обладают рядом проблемных мест. Самое заметное, о чем я уже сказал выше, – эффект «турбоямы», или «турболаг». Отсутствие механической связи между компрессором и двигателем приводит к несоответствию между требуемой мощностью, задаваемой водителем педалью акселератора, и производительностью компрессора. Происходит это по одной простой причине. При снятии ноги с педали газа частота вращения турбокомпрессора снижается. Если снова нажать на педаль, двигатель не сможет сразу развить необходимую мощность, пока турбокомпрессор снова не выйдет на свою скорость. Борются с этим по-разному. Часто можно встретить перепускные клапаны, позволяющие контролировать давление наддува и несколько снизить отрицательный эффект турбозадержки. Есть варианты, когда при отпуска

www.drive2.ru

7 главных минусов и 2 плюса турбомоторов — журнал За рулем

Наддувные моторы постепенно вытесняют атмосферные. Однако некоторые производители сокращают интервал ТО для автомобилей с турбодвигателем. Почему? Давайте разбираться.

Чем турбомотор отличается от атмосферного?

Материалы по теме

Атмосферный мотор засасывает воздух в цилиндры под действием разрежения, которое возникает, когда поршень движется к нижней мертвой точке. В большинстве случаев давление в цилиндре в конце хода впуска чуть ниже атмосферного. И вот с этим количеством воздуха и осуществляется рабочий цикл мотора. Наддувный двигатель получает на входе в цилиндр воздух, сжатый компрессором до определенного давления, а потому его в цилиндр войдет больше, чем у мотора со свободным всасыванием. Больше воздуха — больше кислорода, а значит, и топлива сгорит больше, и мощность при том же рабочем объеме поршневой части будет выше (или мотор компактнее при сохранении мощности).

Поскольку воздух в компрессоре подогревается, температуру перед подачей в цилиндр желательно снизить. Это делает специальный охладитель — интеркулер. Компрессоры могут использоваться разных типов — и с приводом от коленвала, и волновые обменники давления, но наиболее распространен турбонаддув. Последний способ использует энергию выхлопных газов для вращения центростремительной турбины, а сидящее на том же вале колесо центробежного компрессора обеспечивает сжатие воздуха перед подачей в цилиндры.

Наддувный двигатель потребляет сжатый в компрессоре и охлаж

www.zr.ru

Устройство и принцип работы турбокомпрессора — DRIVE2

Устройство и принцип работы турбокомпрессора
Турбокомпрессор (турбина) — механизм, применяемый в автомобилях для принудительного нагнетания воздуха в цилиндры двигателя внутреннего сгорания. При этом привод турбины осуществляется исключительно за счет действия отработавших газов (выхлопа). Применение турбокомпрессора позволяет существенно увеличить мощность двигателя (примерно на 40%), сохраняя компактными его габаритные размеры и низкий уровень расхода топлива.

Конструкция и принцип работы турбины

Устройство турбокомпрессора


Классический турбокомпрессор состоит из следующих элементов:
— Корпус. Выполняется из жаропрочных материалов (стали). Он имеет форму улитки с двумя разнонаправленными патрубками, оснащенными фланцами для крепления в системе турбонаддува.
— Турбинное колесо. Преобразует энергию отработавших газов во вращение вала, на котором оно жестко зафиксировано. Изготавливается из жаропрочных материалов (железо-никелевый сплав).
— Компрессорное колесо. Воспринимает вращение от турбинного колеса и нагнетает воздух в цилиндры двигателя. Колесо компрессора зачастую изготавливают из алюминия, что снижает потери энергии. Температурный режим на этом участке близок к нормальным условиям, и применение жаропрочных материалов не требуется.
— Вал турбины (ось) — соединяет турбинное и компрессорное колеса.
— Подшипники скольжения, или шарикоподшипники. Необходимы для крепления вала в корпусе. В конструкции может быть предусмотрен один или два подшипника. Смазка последних осуществляется общей системой смазки двигателя.
— Перепускной клапан — предназначен для управления потоком отработавших газов, воздействующим на колесо турбины. Это позволяет управлять мощностью наддува. Клапан оснащен пневматическим приводом. Его положение регулируется ЭБУ двигателя, получающим соответствующий сигнал от датчика скорости.


Основной принцип работы турбины на бензиновом и дизельном двигателях заключается в следующем:
— Отработавшие газы направляются в корпус турбокомпрессора, где воздействуют на лопатки турбинного колеса.
— Колесо турбины начинает вращаться и разгоняться. Скорость вращения турбины при высоких оборотах может достигать до 250 000 оборотов в минуту.
— Пройдя через колесо турбины, отработавшие газы отводятся в систему выпуска.
— Компрессорное колесо синхронно вращается (поскольку находится на одном валу с турбинным) и направляет поток сжатого воздуха в интеркулер и далее во впускной коллектор двигателя.

Особенности эксплуатации турбин
В сравнении с механическим нагнетателем, работающим от привода коленчатого вала, достоинствами турбины является то, что она не отнимает мощность у двигателя, а использует энергию побочных продуктов его работы. Она дешевле в изготовлении и экономичнее в эксплуатации. Хотя технически устройство турбины дизельного двигателя практически не отличается от систем для бензиновых моторов, на дизеле она встречается чаще. Основная особенность заключается в режимах работы. Так для дизеля могут применяться менее жаропрочные материалы, поскольку температура отработавших газов в среднем составляет от 700 °С в дизельных двигателях и от 1000°С в бензиновых моторах. Это значит, что устанавливать дизельную турбину на бензиновый двигатель нельзя.
С другой стороны, для этих систем характерны и разные уровни давления наддува. При этом стоит учитывать, что производительность турбины зависит от ее геометрических размеров. Давление нагнетаемого в цилиндры воздуха складывается из двух частей: 1 атмосфера давления окружающей среды плюс избыточное, создаваемое турбокомпрессором. Оно может варьироваться от 0,4 до 2,2 и более атмосфер. Если учесть, что принцип работы турбины на дизельном двигателе предусматривает поступление большего объема выхлопных газов, конструкция для бензинового мотора также не может устанавливаться на дизелях

Виды и срок службы турбокомпрессоров
Основным недостатком работы турбины является возникающий на малых оборотах двигателя эффект «турбоямы». Он представляет собой временную задержку отклика системы на изменение оборотов двигателя. Для устранения этого недостатка разработаны различные виды турбокомпрессоров:
— Система twin-scroll, или раздельный турбокомпрессор. Конструкция имеет два канала, которые разделяют камеру турбины и, соответственно, поток отработавших газов. Это обеспечивает более быстрое реагирование, максимальную производительность турбины, а также предотвращает перекрытие выпускных каналов.
— Турбина с изменяемой геометрией (с переменным соплом). Такая конструкция чаще используется на дизеле. Она предусматривает изменение сечения входа в колесо турбины за счет подвижности ее лопастей. Смена угла поворота позволяет регулировать поток отработавших газов, благодаря чему происходит согласование скорости отработавших газов и рабочих оборотов двигателя. На бензиновом двигателе турбина с изменяемой геометрией часто устанавливается на спортивных автомобилях.

К минусам турбокомпрессоров можно отнести и небольшой срок службы турбины. Для бензиновых двигателей он в среднем составляет 150 000 километров пробега машины. В свою очередь, ресурс турбины дизельного двигателя несколько больше и в среднем достигает 250 000 километров. При постоянной езде на высоких оборотах, а также при неправильном подборе масла сроки эксплуатации могут сократиться в два или даже в три раза.
В зависимости от того, как работает турбина, на бензиновом или дизельном двигателе, можно судить о ее исправности. Сигналом о необходимости проверки узла является появление синего или черного дыма, снижение мощности двигателя, а также появление свиста и скрежета. Для профилактики неисправностей необходимо вовремя менять масло, воздушные фильтры и регулярно проходить техобслуживание.

www.drive2.ru

Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Турбонаддув представляет собой разновидность наддува, позволяющий подавать воздух в цилиндры ДВС под высоким давлением, которое обеспечивается высвобождаемой от сгорания топлива энергией выхлопных газов.

За счет турбонаддува повышается рабочая мощность двигателя, при этом не увеличивается внутренние объемы цилиндров двигателя и количество оборотов, совершаемых коленвалом. Кроме всего прочего турбонаддув позволяет снизить прожорливость двигателя, а также уменьшить токсичность газов благодаря более эффективному сгоранию топливовоздушной смеси.

Турбонаддув довольно широко используется на ДВС, работающих как на бензине так и на дизтопливе. При этом использование системы турбонаддува на дизелях считается более выгодным благодаря высокому показателю сжатия ДВС и малой частоте оборотов коленвала.

В бензиновых двигателях высока вероятность возникновения детонирующего эффекта вследствие значительного увеличения количества оборотов двигателя и высокого температурного режима газов при сгорании топлива (до 1000 °C, у дизеля лишь 600 °C).

Устройство системы турбонаддува

Система турбонаддува состоит из следующих элементов:

  • воздушный заборник и фильтр;
  • дроссельная заслонка;
  • турбинный компрессор;
  • интеркулер;
  • коллектор впускной;
  • соединительные патрубки;
  • напорные шланги
Турбинный компрессор (нагнетатель)

Основной элемент устройства турбонаддува, который предназначен для увеличения рабочего давления воздушной массы в системе впуска. Турбокомпрессор состоит из турбинного и компрессорного колес, которые установлены на роторном валу. Все элементы турбокомпрессора находятся в специальных защитных корпусах.

Турбинное колесо используется для переработки энергии, выделяемой отработанными газами. Колесо и его корпус изготавливаются из высокопрочных и жароустойчивых материалов – стальных и керамических сплавов.

Компрессорное кольцо применяется для всасывания воздушной массы, с дальнейшим ее сжатием и нагнетанием в цилиндры ДВС.

Кольца турбокомпрессора установлены на роторном валу, который совершает вращательные движения в плавающих подшипниках. Для более эффективной работы подшипники постоянно смазываются маслом, которое поступает по канальцам, расположенным в подшипниковом корпусе.

Интеркулер

Интеркулер – воздушный или жидкостной радиатор, который применяется для своевременного охлаждения предварительно сжатого воздуха, вследствие чего происходит увеличивается давление и плотность воздушного потока.

Регулятор давления наддува

Ключевым элементом управления турбонаддувом является регулятор давления наддува, который по сути своей является перепускным клапаном. Основным назначением клапана является сдерживание и перенаправление части вырабатываемых газов в обход турбинного колеса для снижения давления наддува. 

Перепускной клапан может быть оснащен приводом электрического или пневматического типа. Активация клапана происходит вследствие приема сигналов от датчика давления.

Предохранительный клапан

Клапан предохранительный используется для предотвращения скачков давления воздушной массы, которое часто возникает при быстром закрытии дроссельной заслонки. Избыточное давление либо стравливается в атмосферу, либо переподается на вход компрессора.

Принцип действия турбонаддува

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Для устранения эффекта турбоямы используются три основных метода:

  • Использование системы с двумя (и более) турбокомпрессорами. Турбины могут устанавливаться параллельно – это допускается на двигателях V-образного типа. При этом каждая турбина устанавливается на свой ряд цилиндров. Идея данного метода в том, что две турбины меньшего размера обладают более низкой инерционностью, чем одна большая турбина. Турбины так же могут устанавливаться и последовательно, причем их может быть от двух до четырех (Bugatti). Увеличение производительности и максимальная эффективность турбонаддува в этом случае достигаются за счет того, что при разных оборотах двигателя используется свой турбокомпрессор.
  • Использование турбины с изменяемой геометрией. Подобный метод обеспечивает более рациональное использование энергии отработанных газов за счет изменения площади сечения входного канала турбины. Данный метод весьма часто используется на дизельных двигателях, например всем известная система TDI от Volkswagen.
  • Использование комбинированного типа турбонаддува. Данный метод позволяет применять симбиоз двух систем – механического и турбинного наддува. Механический наддув эффективен на малых оборотах коленвала, при которых сжатие воздуха обеспечивается нагнетателем механического типа. Турбонаддув применяется при высоких оборотах коленвала, где функцию нагнетания воздуха берет на себя турбинный компрессор. Наиболее распространенной системой комбинированного наддува является наддув двигателя TSI от Volkswagen.

autodromo.ru

Что такое турбонаддув в автомобиле и как он работает

Турбонаддув современной конструкции – это сложное в техническом плане устройство. Первые системы для наддува двигателей появились еще в начале XX века. Наибольшее же распространение получила конструкция наддува, компрессор которой приводится от турбины, раскручиваемой выхлопными газами авто до высоких оборотов.

Энергия выхлопных газов бесплатна, поэтому мощность мотора при использовании турбокомпрессора значительно поднимается без ухудшения экономичности, а зачастую, экономичность двигателя даже улучшается (советы как уменьшить расход топлива). Из-за использования в конструкции турбины, такой вид наддува двигателя имеет всем хорошо известное название – турбонаддув.

Воздух при сжатии компрессором нагревается, плотность падает, и в цилиндры его помещается меньше, поэтому, довольно часто, после турбокомпрессора нагнетаемый воздух пропускают через специальный радиатор – интеркулер, в котором он охлаждается.

Частота вращения турбины и связанного с ней компрессора турбонаддува очень велика (больше ста тысяч оборотов в минуту), поэтому в них применяются подшипники скольжения с очень маленькими зазорами. Соответственно возрастает требовательность двигателя с турбонаддувом к качеству и чистоте масла. Конечно, стоимость этого агрегата тоже немаленькая.

Серьезным недостатком турбонаддува можно считать эффект так называемой ”турбоямы”. Он проявляется при резком нажатии на педаль акселератора – двигатель сперва ”задумывается” и только после этого начинает разгонять автомобиль.

Объясняется это тем, что турбине необходимо какое-то время для раскрутки до рабочих оборотов, и чтобы его уменьшить, на некоторых моделях турбокомпрессоров (как правило, предназначенных для легковых автомобилей) устанавливают специальный клапан, который перепускает часть воздуха с выхода компрессора обратно на его вход.

Таким образом, при закрытии дроссельной заслонки турбина продолжает вращаться с большой скоростью, а турбокомпрессор в это время работает “вхолостую”, перегоняя воздух по кругу. Нажатие на педаль газа закрывает этот клапан, и нагнетаемый воздух в полном объеме снова поступает во впускной коллектор. Обычно управление перепускным клапаном турбонаддува возлагают на электронику.

Другой разновидностью наддува является приводной компрессор, который, в отличии от турбонаддува, вращается коленчатым валом двигателя. Поскольку для его привода отбирается энергия у мотора, такие системы менее экономичны, чем аналогичные силовые агрегаты без компрессора или с турбонаддувом. Зато они надежнее, дешевле и не имеют ”турбоямы”, что очень важно для спортивных автомобилей, где при разгоне каждая доля секунды на счету.

Такие компрессоры часто используют западные тюнинговые компании для увеличения мощности моторов – это гораздо дешевле, чем увеличивать рабочий объем, организуя мелкосерийное производство поршней, коленвалов и других технологически сложных деталей. Их используют такие автомобильные “гранды” как Mercedes, General Motors, Ford, Jaguar, Mazda и другие автопроизводители.

unit-car.com

Что такое двигатель с турбонаддувом и как он влияет на время в пути?

Когда вы слышите термин «с турбонаддувом», вы, вероятно, автоматически связываете его со словом «быстрый». И вы не ошибетесь — этот тип двигателя имеет репутацию того, что позволяет вам по-настоящему нажать на педаль. Однако знаете ли вы, как работает двигатель с турбонаддувом и на что он влияет на время в пути? Toyota из Клермона готова дать ответы.

Что такое двигатели с турбонаддувом?

Двигатели с турбонаддувом обычно используются в автомобилях, рассчитанных на скорость, таких как новая Clermont Toyota Supra.У него есть турбокомпрессор под капотом его рядного шестицилиндрового двигателя, и ходят слухи, что в 2021 модельном году на рынок появятся ДВА варианта двигателей с турбонаддувом, из которых водители смогут выбирать. Но чтобы действительно понять, как этот тип зарядного устройства может увеличить время вождения, давайте рассмотрим подробнее.

  • Турбированный двигатель или двигатель с турбонаддувом может повысить топливную экономичность и мощность вашего автомобиля (опять же, почему он так популярен среди водителей, которые любят быстро добираться до места).Вот основная разбивка того, что происходит под капотом в этом сценарии:
  • Мощность турбины используется для создания принудительной индукции — в основном, дополнительный сжатый воздух проталкивается в камеру сгорания вашего двигателя.

Турбокомпрессор, нагнетатель или и то, и другое?

Дополнительный воздух, проталкиваемый в камеру, означает, что, в свою очередь, в камеру будет втягиваться больше топлива. Это увеличивает мощность и ускоряет работу вашего двигателя, потому что дополнительное топливо сгорает быстрее, чем двигатель, использующий «нормальную» аспирацию.

Однако двигатели с турбонаддувом не всегда назывались этим именем — они изначально назывались турбокомпрессорами, потому что в те времена «нагнетатель» означал любой двигатель, который использовал принудительную индукцию (или принудительный сжатый воздух) для повышения мощности и эффективности использования топлива. Однако сейчас есть различие между двумя типами зарядных устройств — вот и положение дел:

  • Двигатель с турбонаддувом использует турбину, которая приводится в действие выхлопными газами двигателя, чтобы впоследствии нагнетать этот дополнительный сжатый воздух в камеру сгорания.
  • Двигатель с наддувом, с другой стороны, использует процесс с механическим приводом. Этот тип зарядного устройства обычно приводится в действие ремнем, прикрепленным к коленчатому валу.

И просто для справки, двойной нагнетатель — это двигатель, в котором используется и то, и другое.

К чему вы должны стремиться, пытаясь увеличить мощность вашего автомобиля? Вот несколько ключевых моментов, которые следует учитывать перед тем, как украшать ваш Clermont Toyota:

  • Двигатели с турбонаддувом имеют отставание. Почему? Потому что между моментом, когда вам требуется увеличенная мощность (или открытием дроссельной заслонки), и фактическим действием проталкивания дополнительного сжатого воздуха в камеру сгорания проходит небольшой промежуток времени.Почему? Поскольку турбокомпрессоры используют выхлопные газы для питания турбины, и когда ваша Clermont Toyota работает на холостом ходу или движется с низкой скоростью, требуется немного больше времени для накопления необходимых выхлопных газов.
  • Не лишены недостатков и двигатели
  • с наддувом. Этот тип зарядного устройства подвергает двигатель дополнительному износу, поскольку он имеет механический привод. Кроме того, он использует часть мощности, которую двигатель изначально создает, для создания БОЛЬШЕ мощности. Вы выйдете вперед по мощности, но не без дополнительного износа двигателя.Эти типы зарядных устройств также создают больше избыточного тепла, что заставляет ваш двигатель работать тяжелее, чтобы оставаться холодным.

Готовы лично проверить двигатель с турбонаддувом? Приезжайте в Toyota в Клермон и посмотрите, что находится под капотом Toyota Supra 2020 года! Мы открыты семь дней в неделю по адресу 3575 Vineland Road.

Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры?

Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры?

Реклама

Криса Вудфорда.Последнее изменение: 18 февраля 2021 г.

Не бывает идеального изобретения: мы всегда можем сделать что-то лучше, дешевле, более эффективный или более экологически чистый. Возьмите внутренний двигатель внутреннего сгорания. Вы можете подумать, что это замечательно, что машина приводимый в действие жидкостью, может сбить вас с дороги или ускорить небо во много раз быстрее, чем вы могли бы путешествовать иначе. Но это всегда можно построить двигатель, который будет работать быстрее, дальше или потреблять меньше топливо. Один из способов улучшить двигатель — использовать турбокомпрессор —a пара вентиляторов, которые используют отработанную мощность выхлопных газов в задней части двигателя, чтобы втиснуть больше воздух впереди, доставляя больше энергии, чем в противном случае. получать.Мы все слышали о турбинах, но как именно они работают? Давайте присмотритесь!

Фото: в типичном автомобильном турбокомпрессоре используется пара таких вентиляторов в форме улитки. Тот, который вы видите здесь, — это Garrett GT2871R, который вот-вот будет установлен на двигатель Pontiac G8. Фото Райана С. Делкора любезно предоставлено ВМС США.

Что такое турбокомпрессор?

Фото: два вида безмасляного турбокомпрессора, разработанного НАСА. Фото любезно предоставлено Исследовательский центр НАСА Гленна (NASA-GRC).

Вы когда-нибудь видели, как мимо вас проезжают машины, из выхлопной трубы которых струится сажа? Очевидно, выхлопные газы вызывают загрязнение воздуха, но это гораздо меньше очевидно, что они при этом тратят энергию впустую. Выхлоп смесь горячих газов выкачивается на скорости и вся энергия содержит — тепло и движение (кинетическая энергия) — исчезает бесполезно в атмосферу. Было бы здорово, если бы двигатель мог бы как-нибудь использовать эту бесполезную энергию, чтобы машина ехала быстрее? Именно это и делает турбокомпрессор.

Автомобильные двигатели получают энергию за счет сжигания топлива в прочных металлических канистрах, называемых цилиндрами. Воздух входит каждый цилиндр смешивается с топливом и горит, чтобы произвести небольшой взрыв который выталкивает поршень, вращая валы и шестерни, которые вращают колеса автомобиля. Когда поршень возвращается внутрь, он нагнетает отработанный воздух. и топливная смесь выходит из цилиндра как выхлоп. Количество мощности Производительность автомобиля напрямую зависит от того, насколько быстро он сжигает топливо. В у вас больше цилиндров и чем они больше, тем больше топлива машина может гореть каждую секунду и (по крайней мере теоретически) тем быстрее можешь идти.

Один из способов ускорить движение автомобиля — это добавить больше цилиндров. Вот почему супер-быстрые спорткары обычно имеют восемь и двенадцать цилиндров вместо четырех или шести цилиндры в обычном семейном автомобиле. Другой вариант — использовать турбонагнетатель, который нагнетает больше воздуха в цилиндры каждую секунду, так что они могут сжигать топливо быстрее. Турбокомпрессор — это простой, относительно дешевый, дополнительный немного обвеса, который может получить больше мощности от того же двигателя!

Как работает турбокомпрессор?

Если вы знаете, как работает реактивный двигатель, вы на полпути к пониманию турбонагнетателя автомобиля.А реактивный двигатель всасывает холодный воздух спереди, сжимает его в камеру где он горит топливом, а затем выдувает горячий воздух из спины. В качестве горячий воздух уходит, он с ревом проносится мимо турбины (что-то вроде очень компактная металлическая ветряная мельница), которая приводит в движение компрессор (воздушный насос) спереди двигателя. Это бит, который нагнетает воздух в двигатель, чтобы заставить топливо гореть должным образом. Турбокомпрессор на автомобиле применяет очень принцип аналогичен поршневому двигателю. Он использует выхлопные газы для водить турбину.Это вращает воздушный компрессор, который выталкивает дополнительный воздух. (и кислород) в цилиндры, позволяя им сжигать больше топлива каждый второй. Вот почему автомобиль с турбонаддувом может производить больше мощности (что это еще один способ сказать «больше энергии в секунду»). Нагнетатель (или «нагнетатель с механическим приводом», чтобы дать ему полное название) очень похож на турбокомпрессор, но вместо того, чтобы приводиться в движение выхлопными газами с помощью турбины, он приводится в действие вращающимся коленчатым валом автомобиля. Обычно это недостаток: там, где турбокомпрессор питается от отходов энергии выхлопных газов, нагнетатель фактически крадет энергию от собственного источника энергии автомобиля (коленчатого вала), что обычно бесполезно.

Фото: Суть турбокомпрессора: два газовых вентилятора (турбина и компрессор), установленные на одном валу. Когда один поворачивается, другой тоже поворачивается. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

Как на практике работает турбонаддув? Турбокомпрессор — это два маленьких вентилятора (также называемых крыльчатками). или бензонасосы), сидящие на одном металлическом валу, так что оба вращаются вместе. Один из этих вентиляторов, называемый турбиной , находится в выхлопная струя из цилиндров.Когда цилиндры выдувают горячий газ лопасти вентилятора, они вращаются и вал, с которым они соединены (технически называется вращающийся узел центральной ступицы или CHRA) также вращается. Второй вентилятор называется , компрессор и, поскольку он сидит на том же валу, что и турбина, он тоже вращается. Он установлен внутри воздухозаборника автомобиля, так что, вращаясь, он втягивает воздух в машину и нагнетает его в цилиндры.

Теперь здесь небольшая проблема. Если сжать газ, он станет горячее (вот почему велосипедный насос нагревается, когда вы начинаете накачивать шины).Горячее воздух менее плотный (поэтому теплый воздух поднимается над радиаторами) и меньше эффективны для сжигания топлива, поэтому было бы намного лучше, если бы воздух, поступающий из компрессора, был охлажден перед входом цилиндры. Для его охлаждения мощность компрессора проходит через над теплообменником, который удаляет дополнительное тепло и направляет его в другое место.

Как работает турбокомпрессор — подробнее

Основная идея заключается в том, что выхлоп приводит в движение турбину (красный вентилятор), которая напрямую подключен (и питает) компрессор (синий вентилятор), который нагнетает воздух в двигатель.Для простоты мы показываем только один цилиндр. Итак, вкратце, как все это работает:

  1. Холодный воздух поступает в воздухозаборник двигателя и направляется к компрессору.
  2. Вентилятор компрессора помогает всасывать воздух.
  3. Компрессор сжимает и нагревает поступающий воздух, а затем снова его выдувает.
  4. Горячий сжатый воздух от компрессора проходит через теплообменник, который охлаждает его.
  5. Охлажденный сжатый воздух поступает в воздухозаборник цилиндра.Дополнительный кислород помогает сжигать топливо в цилиндре быстрее.
  6. Поскольку цилиндр сжигает больше топлива, он быстрее вырабатывает энергию и может передавать больше мощности на колеса через поршень, валы и шестерни.
  7. Отработанный газ из цилиндра выходит через выхлопное отверстие.
  8. Горячие выхлопные газы, обдувающие турбинный вентилятор, заставляют его вращаться с высокой скоростью.
  9. Вращающаяся турбина установлена ​​на том же валу, что и компрессор (показан здесь бледно-оранжевой линией).Итак, когда вращается турбина, вращается и компрессор.
  10. Выхлопные газы покидают автомобиль, расходуя меньше энергии, чем в противном случае.

На практике компоненты можно было соединить примерно так. Турбина (красная справа) забирает отработанный воздух через впускное отверстие, приводя в действие компрессор (синий, слева), который забирает чистый наружный воздух и нагнетает его в двигатель. Эта конкретная конструкция имеет электрическую систему охлаждения (зеленую) между турбиной и компрессором.

Иллюстрация: Как турбина и компрессор соединены в турбонагнетателе с электрическим охлаждением. Из патента США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдано 24 мая 2011 г. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

Откуда берется дополнительная мощность?

Турбокомпрессоры придают автомобилю больше мощности, но эта дополнительная мощность не поступать непосредственно из отработанного выхлопного газа — и это иногда сбивает людей с толку.С турбонагнетателем мы используем часть энергии выхлопных газов для приведения в действие компрессора, что позволяет двигателю сжигать больше топлива каждую секунду. Это дополнительное топливо — вот где дополнительная мощность автомобиля происходит от. Все выхлопные газы приводят в действие турбокомпрессор и, поскольку турбокомпрессор не подключен к коленчатому валу или колесам автомобиля, он не напрямую, каким-либо образом увеличивает мощность автомобиля. Это просто включение один и тот же двигатель для более быстрого сжигания топлива, что делает его более мощным.

Сколько дополнительной мощности вы можете получить?

Если турбокомпрессор дает двигателю большую мощность, более крупный и лучший турбокомпрессор даст это даже больше мощности. Теоретически вы можете продолжать улучшать свой турбокомпрессор. чтобы сделать ваш двигатель все более мощным, но в конечном итоге вы достигнете предела. Цилиндры такие большие, и топлива они могут сжечь ровно столько, сколько нужно. Через впускное отверстие определенного размера вы можете втолкнуть в них столько воздуха, сколько выхлопных газов, что ограничивает энергию, которую вы можете использовать для приведения в действие турбокомпрессора.Другими словами, в игру вступают и другие ограничивающие факторы, которые необходимо учитывать. аккаунт тоже; вы не можете просто ускорить свой путь до бесконечности!

Преимущества и недостатки турбокомпрессоров

Фото: Типичный автомобильный турбокомпрессор. Вы можете четко видеть два вентилятора / нагнетателя (один над другим) и их вход / выход. Фото любезно предоставлено Армией США.

Вы можете использовать турбокомпрессоры как с бензиновыми, так и с дизельными двигателями и более или менее на любых вид транспортного средства (автомобиль, грузовик, корабль или автобус).Основное преимущество использования турбонагнетателя заключается в увеличении выходной мощности. для двигателя того же размера (каждый ход поршня в каждом цилиндре генерирует больше мощности, чем в противном случае). Однако чем больше мощность, тем выше выход энергии в секунду, и закон сохранения энергии говорит нам, что вы должны вкладывать больше энергии, поэтому вы должны сжигать, соответственно, больше топлива. Теоретически это означает, что двигатель с турбонагнетателем не более экономичен, чем двигатель без него.Однако на практике двигатель, оснащенный турбонагнетателем, намного меньше и легче, чем двигатель, производящий такую ​​же мощность без турбонагнетателя, поэтому автомобиль с турбонагнетателем может обеспечить лучшую экономию топлива в этом отношении. Производители теперь часто могут обойтись без установки гораздо меньшего двигателя на тот же автомобиль (например, V6 с турбонаддувом вместо V8 или четырехцилиндрового двигателя с турбонаддувом вместо V6). И именно здесь автомобили с турбонаддувом получают свое преимущество: при хорошей работе они могут сэкономить до 10 процентов вашего топлива.Поскольку они сжигают топливо с большим количеством кислорода, они, как правило, сжигают его более тщательно и чисто, вызывая меньшее загрязнение воздуха.

« Большинство отраслевых экспертов ожидают, что к 2027 году более половины автомобилей, проданных в США, будут оснащены одним двигателем.

The New York Times, 2018

Большая мощность при том же размере двигателя — это замечательно, так почему же не все двигатели имеют турбонаддув? Одна из причин заключается в том, что преимущества экономии топлива, обещанные ранними турбокомпрессорами, не всегда оказывались столь впечатляющими, как утверждали производители (стремящиеся воспользоваться любым маркетинговым преимуществом над своими конкурентами).Одно исследование 2013 года, проведенное Consumer Reports, показало, что небольшие двигатели с турбонаддувом дают значительно худшую экономию топлива, чем их «безнаддувные» (обычные) аналоги, и пришел к выводу: «Не принимайте экологические хвастовства двигателей с турбонаддувом за чистую монету. Есть более эффективные способы экономить топливо, в том числе гибриды, дизели и другие передовые технологии ». Надежность тоже часто была проблемой: турбокомпрессоры добавляют еще один уровень механической сложности к обычному двигателю — короче говоря, есть еще немало вещей, которые могут пойти не так.Это может значительно удорожать обслуживание турбин. По определению, турбонаддув — это получение большего от той же базовой конструкции двигателя, и многие компоненты двигателя должны испытывать более высокие давления и температуры, что может привести к более быстрому выходу деталей из строя; вот почему, вообще говоря, двигатели с турбонаддувом служат не так долго. Даже вождение с турбонаддувом может отличаться: поскольку турбокомпрессор приводится в действие выхлопными газами, часто наблюдается значительная задержка («турбо-задержка») между тем, когда вы нажимаете ногу на акселератор, и моментом включения турбонагнетателя, и это может привести к турбо машины очень разные (а иногда и очень хитрые) в управлении.В последние несколько лет ведущие производители, такие как Garrett и BorgWarner, активно разрабатывают частично или полностью электрические турбокомпрессоры для решения этой проблемы; Предложение Гарретта называется E-Turbo, а предложение Борга — eBooster®.

Кто изобрел турбокомпрессор?

Кому мы благодарим за турбокомпрессоры? Альфред Дж. Бюхи (1879–1959), автомобильный инженер, работавший в двигательной компании Gebrüder Sulzer в Винтертуре, Швейцария. Как и в случае с турбонагнетателем, который я проиллюстрировал выше, в его оригинальной конструкции использовался приводной от выхлопа вал турбины для питания компрессора, который нагнетал больше воздуха в цилиндры двигателя.Первоначально он разработал турбокомпрессор за годы до Первой мировой войны и запатентовал его в Германии в 1905 году, но продолжал работать над улучшенными конструкциями до своей смерти четыре десятилетия спустя.

Однако

Бючи была не единственной важной фигурой в истории. Несколькими годами ранее сэр Дугалд Кларк (1854–1932), шотландский изобретатель двухтактного двигателя, экспериментировал с разделением ступеней сжатия и расширения внутреннего сгорания с помощью двух отдельных цилиндров. Это немного похоже на наддув, увеличивая как поток воздуха в цилиндр, так и количество топлива, которое может быть сожжено.Другие инженеры, включая Луи Рено, Готлиба Даймлера и Ли Чедвик также успешно экспериментировал с системами наддува.

Изображение: один из проектов турбокомпрессора Альфреда Бючи конца 1920-х годов (патент был подан в 1927 году и выдан в апреле 1934 года). Я раскрасил его, чтобы вы могли быстро разобраться в этом. Вы можете увидеть один цилиндр (желтый) и поршень, кривошип и шатун (красный) слева. Выхлопные газы из цилиндра проходят через трубу (зеленую), которая приводит в движение турбину.Он подключен к оранжевому «нагнетателю» (компрессору) и охладителю (синий ящик), который нагнетает воздух в цилиндр через синюю трубу. Есть множество других сложных деталей, но я не буду вдаваться во все детали; Если вам интересно, взгляните на патент США № 1,955,620: Двигатель внутреннего сгорания (обслуживается через Google Patents). Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

Если вам понравилась эта статья …

… вам могут понравиться мои книги. Мой последний Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На сайте

Книги для старших читателей

Книги для юных читателей

  • Car Science Ричард Хаммонд. Дорлинг Киндерсли, 2007. Объясняет, почему ваша машина работает (в возрасте 9–12 лет).

Статьи

  • Garrett E-Turbo обещает большую мощность, лучшую эффективность и меньшее отставание от Аарона Турпена, New Atlas, 20 октября 2019 года. История новых электрических турбин Гарретта.
  • «Прыжки с турбонаддувом с гоночной трассы на Кюль-де-Сак» Стивена Уильямса. The New York Times, 25 октября 2018 года. Как турбокомпрессоры стали неотъемлемой частью современного автомобильного двигателя.
  • Маленький вентилятор, решающий самую большую проблему турбокомпрессора. Автор Алекс Дэвис. Wired, 24 августа 2017 г. Краткий обзор eBooster от BorgWarner.
  • Как сделать турбодвигатели более эффективными? «Просто добавь воды» Ник Чап. The New York Times, 29 сентября 2016 г. Компания Bosch возрождает идею распыления воды на цилиндры с турбонаддувом, чтобы они работали более прохладно и менее беспорядочно.
  • Автопроизводители считают, что турбины — мощный путь к экономии топлива, Лоуренс Ульрих. The New York Times, 26 февраля 2015 г. Почему такие производители, как Ford и BMW, с энтузиазмом продвигают двигатели с турбонаддувом.
  • 50 лет назад Джим Коскс сделал турбонагнетатель революционной технологией. The New York Times, 19 декабря 2014 года. Как первые турбокомпрессоры в конечном итоге преодолели свои первые проблемы.
  • Чак Скватриглиа, «Если вы не водите турбо», то скоро будете. Wired, 24 сентября 2010 г.Ожидается, что к 2015 году количество автомобилей с установленными турбокомпрессорами увеличится вдвое, поскольку производители ищут новые способы повышения производительности от двигателей меньшего размера.
  • Turbo приветствует экологический сертификат Йорна Мадслиена. BBC News, 11 октября 2009 г. Турбины заставляют автомобили двигаться быстрее; они также могут сделать их «экологичнее» за счет снижения расхода топлива.

Патенты

Если вы ищете подробные технические описания того, как все работает, патенты — хорошее место для начала. Здесь Вот некоторые недавние патенты на турбокомпрессоры, которые стоит проверить:

  • Патент США № 1,955,620: Двигатель внутреннего сгорания Альфреда Дж.Бючи, предоставлен 17 апреля 1934 года. Ранний турбодвигатель, спроектированный самим изобретателем турбокомпрессоров.
  • Патент США №
  • № 2 309 968: Управление турбокомпрессором и метод, выданный Ричардом Дж. Ллойдом, корпорация Garrett, 1 февраля 1977 года. Основное внимание уделяется системе управления турбокомпрессором, которая эффективно работает при различных оборотах двигателя.
  • Патент США № 4083188: Система турбонаддува двигателя, выданная Emerson Kumm, The Garrett Corporation, 11 апреля 1978 года. Современный турбонагнетатель для дизельного двигателя с низкой степенью сжатия.
  • Патент США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдан 24 мая 2011 г. Новый метод охлаждения турбокомпрессора.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2010, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

eBooster является зарегистрированным товарным знаком BorgWarner Inc. Corporation

Подписывайтесь на нас

Поделиться страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2010/2020) Турбокомпрессоры. Получено с https: // www.exploainthatstuff.com/how-turbochargers-work.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры?

Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры?

Реклама

Криса Вудфорда. Последнее изменение: 18 февраля 2021 г.

Не бывает идеального изобретения: мы всегда можем сделать что-то лучше, дешевле, более эффективный или более экологически чистый.Возьмите внутренний двигатель внутреннего сгорания. Вы можете подумать, что это замечательно, что машина приводимый в действие жидкостью, может сбить вас с дороги или ускорить небо во много раз быстрее, чем вы могли бы путешествовать иначе. Но это всегда можно построить двигатель, который будет работать быстрее, дальше или потреблять меньше топливо. Один из способов улучшить двигатель — использовать турбокомпрессор —a пара вентиляторов, которые используют отработанную мощность выхлопных газов в задней части двигателя, чтобы втиснуть больше воздух впереди, доставляя больше энергии, чем в противном случае. получать.Мы все слышали о турбинах, но как именно они работают? Давайте присмотритесь!

Фото: в типичном автомобильном турбокомпрессоре используется пара таких вентиляторов в форме улитки. Тот, который вы видите здесь, — это Garrett GT2871R, который вот-вот будет установлен на двигатель Pontiac G8. Фото Райана С. Делкора любезно предоставлено ВМС США.

Что такое турбокомпрессор?

Фото: два вида безмасляного турбокомпрессора, разработанного НАСА. Фото любезно предоставлено Исследовательский центр НАСА Гленна (NASA-GRC).

Вы когда-нибудь видели, как мимо вас проезжают машины, из выхлопной трубы которых струится сажа? Очевидно, выхлопные газы вызывают загрязнение воздуха, но это гораздо меньше очевидно, что они при этом тратят энергию впустую. Выхлоп смесь горячих газов выкачивается на скорости и вся энергия содержит — тепло и движение (кинетическая энергия) — исчезает бесполезно в атмосферу. Было бы здорово, если бы двигатель мог бы как-нибудь использовать эту бесполезную энергию, чтобы машина ехала быстрее? Именно это и делает турбокомпрессор.

Автомобильные двигатели получают энергию за счет сжигания топлива в прочных металлических канистрах, называемых цилиндрами. Воздух входит каждый цилиндр смешивается с топливом и горит, чтобы произвести небольшой взрыв который выталкивает поршень, вращая валы и шестерни, которые вращают колеса автомобиля. Когда поршень возвращается внутрь, он нагнетает отработанный воздух. и топливная смесь выходит из цилиндра как выхлоп. Количество мощности Производительность автомобиля напрямую зависит от того, насколько быстро он сжигает топливо. В у вас больше цилиндров и чем они больше, тем больше топлива машина может гореть каждую секунду и (по крайней мере теоретически) тем быстрее можешь идти.

Один из способов ускорить движение автомобиля — это добавить больше цилиндров. Вот почему супер-быстрые спорткары обычно имеют восемь и двенадцать цилиндров вместо четырех или шести цилиндры в обычном семейном автомобиле. Другой вариант — использовать турбонагнетатель, который нагнетает больше воздуха в цилиндры каждую секунду, так что они могут сжигать топливо быстрее. Турбокомпрессор — это простой, относительно дешевый, дополнительный немного обвеса, который может получить больше мощности от того же двигателя!

Как работает турбокомпрессор?

Если вы знаете, как работает реактивный двигатель, вы на полпути к пониманию турбонагнетателя автомобиля.А реактивный двигатель всасывает холодный воздух спереди, сжимает его в камеру где он горит топливом, а затем выдувает горячий воздух из спины. В качестве горячий воздух уходит, он с ревом проносится мимо турбины (что-то вроде очень компактная металлическая ветряная мельница), которая приводит в движение компрессор (воздушный насос) спереди двигателя. Это бит, который нагнетает воздух в двигатель, чтобы заставить топливо гореть должным образом. Турбокомпрессор на автомобиле применяет очень принцип аналогичен поршневому двигателю. Он использует выхлопные газы для водить турбину.Это вращает воздушный компрессор, который выталкивает дополнительный воздух. (и кислород) в цилиндры, позволяя им сжигать больше топлива каждый второй. Вот почему автомобиль с турбонаддувом может производить больше мощности (что это еще один способ сказать «больше энергии в секунду»). Нагнетатель (или «нагнетатель с механическим приводом», чтобы дать ему полное название) очень похож на турбокомпрессор, но вместо того, чтобы приводиться в движение выхлопными газами с помощью турбины, он приводится в действие вращающимся коленчатым валом автомобиля. Обычно это недостаток: там, где турбокомпрессор питается от отходов энергии выхлопных газов, нагнетатель фактически крадет энергию от собственного источника энергии автомобиля (коленчатого вала), что обычно бесполезно.

Фото: Суть турбокомпрессора: два газовых вентилятора (турбина и компрессор), установленные на одном валу. Когда один поворачивается, другой тоже поворачивается. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

Как на практике работает турбонаддув? Турбокомпрессор — это два маленьких вентилятора (также называемых крыльчатками). или бензонасосы), сидящие на одном металлическом валу, так что оба вращаются вместе. Один из этих вентиляторов, называемый турбиной , находится в выхлопная струя из цилиндров.Когда цилиндры выдувают горячий газ лопасти вентилятора, они вращаются и вал, с которым они соединены (технически называется вращающийся узел центральной ступицы или CHRA) также вращается. Второй вентилятор называется , компрессор и, поскольку он сидит на том же валу, что и турбина, он тоже вращается. Он установлен внутри воздухозаборника автомобиля, так что, вращаясь, он втягивает воздух в машину и нагнетает его в цилиндры.

Теперь здесь небольшая проблема. Если сжать газ, он станет горячее (вот почему велосипедный насос нагревается, когда вы начинаете накачивать шины).Горячее воздух менее плотный (поэтому теплый воздух поднимается над радиаторами) и меньше эффективны для сжигания топлива, поэтому было бы намного лучше, если бы воздух, поступающий из компрессора, был охлажден перед входом цилиндры. Для его охлаждения мощность компрессора проходит через над теплообменником, который удаляет дополнительное тепло и направляет его в другое место.

Как работает турбокомпрессор — подробнее

Основная идея заключается в том, что выхлоп приводит в движение турбину (красный вентилятор), которая напрямую подключен (и питает) компрессор (синий вентилятор), который нагнетает воздух в двигатель.Для простоты мы показываем только один цилиндр. Итак, вкратце, как все это работает:

  1. Холодный воздух поступает в воздухозаборник двигателя и направляется к компрессору.
  2. Вентилятор компрессора помогает всасывать воздух.
  3. Компрессор сжимает и нагревает поступающий воздух, а затем снова его выдувает.
  4. Горячий сжатый воздух от компрессора проходит через теплообменник, который охлаждает его.
  5. Охлажденный сжатый воздух поступает в воздухозаборник цилиндра.Дополнительный кислород помогает сжигать топливо в цилиндре быстрее.
  6. Поскольку цилиндр сжигает больше топлива, он быстрее вырабатывает энергию и может передавать больше мощности на колеса через поршень, валы и шестерни.
  7. Отработанный газ из цилиндра выходит через выхлопное отверстие.
  8. Горячие выхлопные газы, обдувающие турбинный вентилятор, заставляют его вращаться с высокой скоростью.
  9. Вращающаяся турбина установлена ​​на том же валу, что и компрессор (показан здесь бледно-оранжевой линией).Итак, когда вращается турбина, вращается и компрессор.
  10. Выхлопные газы покидают автомобиль, расходуя меньше энергии, чем в противном случае.

На практике компоненты можно было соединить примерно так. Турбина (красная справа) забирает отработанный воздух через впускное отверстие, приводя в действие компрессор (синий, слева), который забирает чистый наружный воздух и нагнетает его в двигатель. Эта конкретная конструкция имеет электрическую систему охлаждения (зеленую) между турбиной и компрессором.

Иллюстрация: Как турбина и компрессор соединены в турбонагнетателе с электрическим охлаждением. Из патента США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдано 24 мая 2011 г. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

Откуда берется дополнительная мощность?

Турбокомпрессоры придают автомобилю больше мощности, но эта дополнительная мощность не поступать непосредственно из отработанного выхлопного газа — и это иногда сбивает людей с толку.С турбонагнетателем мы используем часть энергии выхлопных газов для приведения в действие компрессора, что позволяет двигателю сжигать больше топлива каждую секунду. Это дополнительное топливо — вот где дополнительная мощность автомобиля происходит от. Все выхлопные газы приводят в действие турбокомпрессор и, поскольку турбокомпрессор не подключен к коленчатому валу или колесам автомобиля, он не напрямую, каким-либо образом увеличивает мощность автомобиля. Это просто включение один и тот же двигатель для более быстрого сжигания топлива, что делает его более мощным.

Сколько дополнительной мощности вы можете получить?

Если турбокомпрессор дает двигателю большую мощность, более крупный и лучший турбокомпрессор даст это даже больше мощности. Теоретически вы можете продолжать улучшать свой турбокомпрессор. чтобы сделать ваш двигатель все более мощным, но в конечном итоге вы достигнете предела. Цилиндры такие большие, и топлива они могут сжечь ровно столько, сколько нужно. Через впускное отверстие определенного размера вы можете втолкнуть в них столько воздуха, сколько выхлопных газов, что ограничивает энергию, которую вы можете использовать для приведения в действие турбокомпрессора.Другими словами, в игру вступают и другие ограничивающие факторы, которые необходимо учитывать. аккаунт тоже; вы не можете просто ускорить свой путь до бесконечности!

Преимущества и недостатки турбокомпрессоров

Фото: Типичный автомобильный турбокомпрессор. Вы можете четко видеть два вентилятора / нагнетателя (один над другим) и их вход / выход. Фото любезно предоставлено Армией США.

Вы можете использовать турбокомпрессоры как с бензиновыми, так и с дизельными двигателями и более или менее на любых вид транспортного средства (автомобиль, грузовик, корабль или автобус).Основное преимущество использования турбонагнетателя заключается в увеличении выходной мощности. для двигателя того же размера (каждый ход поршня в каждом цилиндре генерирует больше мощности, чем в противном случае). Однако чем больше мощность, тем выше выход энергии в секунду, и закон сохранения энергии говорит нам, что вы должны вкладывать больше энергии, поэтому вы должны сжигать, соответственно, больше топлива. Теоретически это означает, что двигатель с турбонагнетателем не более экономичен, чем двигатель без него.Однако на практике двигатель, оснащенный турбонагнетателем, намного меньше и легче, чем двигатель, производящий такую ​​же мощность без турбонагнетателя, поэтому автомобиль с турбонагнетателем может обеспечить лучшую экономию топлива в этом отношении. Производители теперь часто могут обойтись без установки гораздо меньшего двигателя на тот же автомобиль (например, V6 с турбонаддувом вместо V8 или четырехцилиндрового двигателя с турбонаддувом вместо V6). И именно здесь автомобили с турбонаддувом получают свое преимущество: при хорошей работе они могут сэкономить до 10 процентов вашего топлива.Поскольку они сжигают топливо с большим количеством кислорода, они, как правило, сжигают его более тщательно и чисто, вызывая меньшее загрязнение воздуха.

« Большинство отраслевых экспертов ожидают, что к 2027 году более половины автомобилей, проданных в США, будут оснащены одним двигателем.

The New York Times, 2018

Большая мощность при том же размере двигателя — это замечательно, так почему же не все двигатели имеют турбонаддув? Одна из причин заключается в том, что преимущества экономии топлива, обещанные ранними турбокомпрессорами, не всегда оказывались столь впечатляющими, как утверждали производители (стремящиеся воспользоваться любым маркетинговым преимуществом над своими конкурентами).Одно исследование 2013 года, проведенное Consumer Reports, показало, что небольшие двигатели с турбонаддувом дают значительно худшую экономию топлива, чем их «безнаддувные» (обычные) аналоги, и пришел к выводу: «Не принимайте экологические хвастовства двигателей с турбонаддувом за чистую монету. Есть более эффективные способы экономить топливо, в том числе гибриды, дизели и другие передовые технологии ». Надежность тоже часто была проблемой: турбокомпрессоры добавляют еще один уровень механической сложности к обычному двигателю — короче говоря, есть еще немало вещей, которые могут пойти не так.Это может значительно удорожать обслуживание турбин. По определению, турбонаддув — это получение большего от той же базовой конструкции двигателя, и многие компоненты двигателя должны испытывать более высокие давления и температуры, что может привести к более быстрому выходу деталей из строя; вот почему, вообще говоря, двигатели с турбонаддувом служат не так долго. Даже вождение с турбонаддувом может отличаться: поскольку турбокомпрессор приводится в действие выхлопными газами, часто наблюдается значительная задержка («турбо-задержка») между тем, когда вы нажимаете ногу на акселератор, и моментом включения турбонагнетателя, и это может привести к турбо машины очень разные (а иногда и очень хитрые) в управлении.В последние несколько лет ведущие производители, такие как Garrett и BorgWarner, активно разрабатывают частично или полностью электрические турбокомпрессоры для решения этой проблемы; Предложение Гарретта называется E-Turbo, а предложение Борга — eBooster®.

Кто изобрел турбокомпрессор?

Кому мы благодарим за турбокомпрессоры? Альфред Дж. Бюхи (1879–1959), автомобильный инженер, работавший в двигательной компании Gebrüder Sulzer в Винтертуре, Швейцария. Как и в случае с турбонагнетателем, который я проиллюстрировал выше, в его оригинальной конструкции использовался приводной от выхлопа вал турбины для питания компрессора, который нагнетал больше воздуха в цилиндры двигателя.Первоначально он разработал турбокомпрессор за годы до Первой мировой войны и запатентовал его в Германии в 1905 году, но продолжал работать над улучшенными конструкциями до своей смерти четыре десятилетия спустя.

Однако

Бючи была не единственной важной фигурой в истории. Несколькими годами ранее сэр Дугалд Кларк (1854–1932), шотландский изобретатель двухтактного двигателя, экспериментировал с разделением ступеней сжатия и расширения внутреннего сгорания с помощью двух отдельных цилиндров. Это немного похоже на наддув, увеличивая как поток воздуха в цилиндр, так и количество топлива, которое может быть сожжено.Другие инженеры, включая Луи Рено, Готлиба Даймлера и Ли Чедвик также успешно экспериментировал с системами наддува.

Изображение: один из проектов турбокомпрессора Альфреда Бючи конца 1920-х годов (патент был подан в 1927 году и выдан в апреле 1934 года). Я раскрасил его, чтобы вы могли быстро разобраться в этом. Вы можете увидеть один цилиндр (желтый) и поршень, кривошип и шатун (красный) слева. Выхлопные газы из цилиндра проходят через трубу (зеленую), которая приводит в движение турбину.Он подключен к оранжевому «нагнетателю» (компрессору) и охладителю (синий ящик), который нагнетает воздух в цилиндр через синюю трубу. Есть множество других сложных деталей, но я не буду вдаваться во все детали; Если вам интересно, взгляните на патент США № 1,955,620: Двигатель внутреннего сгорания (обслуживается через Google Patents). Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

Если вам понравилась эта статья …

… вам могут понравиться мои книги. Мой последний Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На сайте

Книги для старших читателей

Книги для юных читателей

  • Car Science Ричард Хаммонд. Дорлинг Киндерсли, 2007. Объясняет, почему ваша машина работает (в возрасте 9–12 лет).

Статьи

  • Garrett E-Turbo обещает большую мощность, лучшую эффективность и меньшее отставание от Аарона Турпена, New Atlas, 20 октября 2019 года. История новых электрических турбин Гарретта.
  • «Прыжки с турбонаддувом с гоночной трассы на Кюль-де-Сак» Стивена Уильямса. The New York Times, 25 октября 2018 года. Как турбокомпрессоры стали неотъемлемой частью современного автомобильного двигателя.
  • Маленький вентилятор, решающий самую большую проблему турбокомпрессора. Автор Алекс Дэвис. Wired, 24 августа 2017 г. Краткий обзор eBooster от BorgWarner.
  • Как сделать турбодвигатели более эффективными? «Просто добавь воды» Ник Чап. The New York Times, 29 сентября 2016 г. Компания Bosch возрождает идею распыления воды на цилиндры с турбонаддувом, чтобы они работали более прохладно и менее беспорядочно.
  • Автопроизводители считают, что турбины — мощный путь к экономии топлива, Лоуренс Ульрих. The New York Times, 26 февраля 2015 г. Почему такие производители, как Ford и BMW, с энтузиазмом продвигают двигатели с турбонаддувом.
  • 50 лет назад Джим Коскс сделал турбонагнетатель революционной технологией. The New York Times, 19 декабря 2014 года. Как первые турбокомпрессоры в конечном итоге преодолели свои первые проблемы.
  • Чак Скватриглиа, «Если вы не водите турбо», то скоро будете. Wired, 24 сентября 2010 г.Ожидается, что к 2015 году количество автомобилей с установленными турбокомпрессорами увеличится вдвое, поскольку производители ищут новые способы повышения производительности от двигателей меньшего размера.
  • Turbo приветствует экологический сертификат Йорна Мадслиена. BBC News, 11 октября 2009 г. Турбины заставляют автомобили двигаться быстрее; они также могут сделать их «экологичнее» за счет снижения расхода топлива.

Патенты

Если вы ищете подробные технические описания того, как все работает, патенты — хорошее место для начала. Здесь Вот некоторые недавние патенты на турбокомпрессоры, которые стоит проверить:

  • Патент США № 1,955,620: Двигатель внутреннего сгорания Альфреда Дж.Бючи, предоставлен 17 апреля 1934 года. Ранний турбодвигатель, спроектированный самим изобретателем турбокомпрессоров.
  • Патент США №
  • № 2 309 968: Управление турбокомпрессором и метод, выданный Ричардом Дж. Ллойдом, корпорация Garrett, 1 февраля 1977 года. Основное внимание уделяется системе управления турбокомпрессором, которая эффективно работает при различных оборотах двигателя.
  • Патент США № 4083188: Система турбонаддува двигателя, выданная Emerson Kumm, The Garrett Corporation, 11 апреля 1978 года. Современный турбонагнетатель для дизельного двигателя с низкой степенью сжатия.
  • Патент США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдан 24 мая 2011 г. Новый метод охлаждения турбокомпрессора.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2010, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

eBooster является зарегистрированным товарным знаком BorgWarner Inc. Corporation

Подписывайтесь на нас

Поделиться страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2010/2020) Турбокомпрессоры. Получено с https: // www.exploainthatstuff.com/how-turbochargers-work.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работает турбокомпрессор

Drive и его партнеры могут получать комиссию, если вы покупаете продукт по одной из наших ссылок. Подробнее.

Было время, когда безраздельно властвовал V8. Когда «Замены вытеснению нет!» был прикреплен к бамперу каждого хромированного маслкара.Однако, как однажды сказал Боб Дилан: «Времена меняются», и в автомобильном мире это изменение приносит с собой турбокомпрессоры.

Турбокомпрессор — это система, которая помогает двигателю производить больше мощности и крутящего момента за счет принудительной индукции. По сути, турбонагнетатель всасывает воздух, охлаждает его, а затем принудительно нагнетает в двигатель больше воздуха, чем то, что он получит через стандартное впускное отверстие. Конечный результат — намного больше «Уф!»

Тем не менее, турбокомпрессоры могут быть загадочными, и их внутреннее устройство может показаться неприступным для полного понимания.Они не должны быть такими. С вашей командой специалистов Drive, мы избавим вас от того, чтобы вы прищурились на двигатель и неправильно указали на стартер на запчасти из Японии … или Австрии.

Готовы? Устойчивый? Идти!

Depositphotos

Что такое турбокомпрессор?

Турбокомпрессор — это небольшая турбина, которая находится между двигателем и выхлопом.Подключенный к обоим воздухозаборникам, турбонагнетатель использует выхлопные газы для вращения турбины, которая затем нагнетает больше воздуха в двигатель вашего автомобиля и увеличивает мощность автомобиля. Турбонагнетатель состоит из четырех частей. Это:

Турбокомпрессор

Турбокомпрессор сам по себе напоминает улитку и имеет воздухозаборник, выпускной патрубок, две разные крыльчатки (турбина сзади и компрессор спереди) и выхлоп наддувочного воздуха, который поступает в интеркулер .Также есть шланг для масла.

Интеркулер

Для снижения температуры нагнетаемого воздуха, вытесняемого из турбокомпрессора, вторичный радиатор или промежуточный охладитель задерживает воздух до того, как он достигнет двигателя. В качестве охлаждающего агента используется охлаждающая жидкость.

Перепускной клапан

Перепускной клапан — это клапан между впуском выхлопных газов и турбонагнетателем, который обходит турбину и регулирует давление наддува.

ECU Tune

Электронный мозг двигателя с турбонаддувом требует другой калибровки для топливовоздушных смесей и момента зажигания по сравнению с автомобилем с безнаддувным двигателем.Таким образом, если кто-то добавляет турбокомпрессор к двигателю, который никогда не предназначался для него, ему придется перепрограммировать электронный блок управления двигателем (ЭБУ), чтобы он работал должным образом.

Джонатон Кляйн

McLaren 720S с двойным турбонаддувом.

Типы турбокомпрессоров

Существует большое разнообразие турбонагнетателей и применений с турбонаддувом.Вот краткое изложение общих настроек.

Одиночный турбонагнетатель

Одиночный турбонагнетатель является наиболее распространенным типом турбокомпрессора. Он оснащен одной турбиной, и на массовом потребительском рынке он обычно используется в большем количестве пешеходных автомобилей, которым не требуется много лошадиных сил или крутящего момента. На вторичном рынке это одно из самых популярных обновлений тюнера.

Примером этого может быть Honda Civic.

С двойным турбонаддувом

Добавление второго турбонагнетателя увеличивает количество воздуха, которое может быть нагнетено в двигатель для создания большей мощности и крутящего момента.Настройка в целом остается такой же, как у одиночной турбонаддува, если только у вас нет ступенчатой ​​системы с двумя турбонагнетателями, в которой малый турбонаддув сочетается с большим турбонаддувом, чтобы устранить задержку.

Примером этого может быть McLaren 570S.

Quad-Turbocharged

Bugatti Chiron — единственный серийный автомобиль, в котором используется установка с четырехцилиндровым турбонаддувом. Bugatti соединяет две большие турбины и две маленькие турбины с 8,0-литровым двигателем W16, чтобы обеспечить в общей сложности 1500 лошадиных сил. По словам человека, который разогнался до 304 миль в час, это спешка.

Смешанный заряд

Смешанный заряд системы — это когда турбонагнетатель соединен с нагнетателем. Нагнетатель используется для создания более быстрого крутящего момента, в то время как турбонагнетатель увеличивает максимальную мощность в лошадиных силах.

Примером может служить четырехцилиндровый двигатель Volvo с комбинированным наддувом, который используется в автомобилях и внедорожниках класса T6.

Audi

Схема электронного турбонагнетателя.

Электронный турбонагнетатель

Концепция электронного турбонагнетателя обсуждалась в течение некоторого времени, но потребовались мощные исследования и разработки Формулы 1 на миллиард долларов, чтобы создать продукт, достойный производства.

Конструкция электронного турбонагнетателя заимствована у нынешнего поколения автомобилей Формулы-1 и добавляет электричество в смесь для устранения турбо-лага. Между корпусом турбины и компрессором находится небольшой электродвигатель, работающий от электрической системы 48 В. Электродвигатель может вращать компрессор раньше, чем выхлопные газы, тем самым сокращая время между отсутствием наддува и наддува.

Audi заявляет, что добавление электродвигателя к ее агрегату «сокращает время отклика [турбонагнетателя] до менее 250 миллисекунд, что быстрее, чем время реакции среднего человека.”

Наряду с Audi, Mercedes-Benz также выпускает автомобили с электронным турбонаддувом.

Турбокомпрессор Hot-V

Установка «Hot-V» — это когда турбокомпрессор или турбокомпрессоры расположены внутри буквы «V» двигателя. Это не только уменьшает пространство, необходимое для двигателя, но также уменьшает расстояние, которое требуется наддувному воздуху между компрессором и двигателем. Это означает, что турбокомпрессор или турбокомпрессоры могут работать быстрее и уменьшать задержку.

Установка «Hot-V» также разделяет турбину и компрессор и размещает их на противоположных сторонах двигателя.Это снижает накопление тепла в затем нагнетаемом воздухе и значительно снижает охлаждающую нагрузку промежуточных охладителей.

Mercedes-Benz был первым автопроизводителем, запустившим в производство установку Hot-V.

Джонатон Кляйн

А Hyundai Veloster с турбонаддувом №

Кто изобрел турбокомпрессор?

Швейцарский инженер Альфред Бучи впервые разработал турбокомпрессор для увеличения мощности дизельных двигателей в 1905 году.Аккуратный!

Сколько дополнительной мощности можно получить?

Это вопрос каждого редуктора, и, к сожалению, на него нет простого ответа. Обычный турбокомпрессор приносит чистым энтузиастам примерно на 20-40 процентов больше мощности, чем стандартный.

Однако, сколько дополнительной мощности зависит от множества переменных, в том числе от того, насколько велик или мал турбокомпрессор, какие изменения вы внесли во внутренние части двигателя, какой тип топлива вы используете, а также от ECU, настроенного для вашего турбонагнетателя. установка использует. Прибыль от вашей машины будет разной.

Преимущества и недостатки турбокомпрессоров

У всего есть свои компромиссы, и турбокомпрессоры ничем не отличаются. Вот несколько преимуществ и недостатков турбокомпрессоров.

Преимущества

Благодаря увеличенному потоку воздуха турбонагнетатель увеличивает мощность и крутящий момент двигателя. В то же время, поскольку турбокомпрессоры могут производить большую мощность, производители могут уменьшить рабочий объем двигателя и, таким образом, получить более высокую эффективность и более низкие выбросы.

Недостатки

Однако есть недостатки, такие как повышенная сложность, которая делает ремонт двигателя с турбонаддувом дорогим. Также существует проблема турбо-лага.

Что такое турбо-задержка?

Одна из самых больших проблем с производительностью турбокомпрессора — турбо задержка. Поскольку турбонагнетателям требуются выхлопные газы для вращения турбины и, следовательно, компрессора, требуется время для создания наддува и нагнетания большего количества воздуха в двигатель. Создается впечатление, что между моментом нажатия на дроссель и ощущением скачка напряжения есть кратковременная пауза.Вот почему производители начали экспериментировать с электронными турбонагнетателями.

Джонатон Кляйн

Shelby Mustang GT500 с наддувом.

Часто задаваемые вопросы о турбонагнетателях

У вас есть вопросы о турбонагнетателях. Информационная группа Drive дает ответы.

Чем отличается нагнетатель?

В то время как турбонагнетатель использует выхлопные газы для приведения в движение турбины, которая нагнетает больше воздуха в двигатель, нагнетатель использует ременную систему двигателя, чтобы вращать турбину, которая нагнетает больше воздуха в двигатель.Поскольку он работает от собственной мощности двигателя, нагнетатели, как правило, менее эффективны как с точки зрения наддува, так и с точки зрения экономии топлива по сравнению с турбонагнетателем.

Есть ли в моей машине турбокомпрессор?

Может быть. Есть несколько способов проверить. Первый и самый простой — пролистать пыльное руководство по эксплуатации вашего автомобиля. Второй — поискать его в Интернете на сайте производителя или в Google. Последний способ — визуально осмотреть двигатель. Если возле выхлопной трубы вашего автомобиля или вдоль V-образной буквы двигателя есть цилиндрическая металлическая деталь в виде улитки, перед вами автомобиль с турбонаддувом.Турбо свисток?

Какой был первый серийный автомобиль с турбонаддувом?

Эта честь принадлежит Oldsmobile Jetfire, производство которого началось в 1962 году.

Турбокомпрессоры — дорогие?

Могут быть. Если вы модифицируете существующий автомобиль, который изначально не был оснащен турбонагнетателем, вам потребуется внести множество изменений, чтобы турбокомпрессор мог работать. Это может обойтись дорого: комплекты турбонагнетателей стоят от 1500 до 20 000 долларов в зависимости от машины, на которой вы бьете этих улиток.

Аналогичным образом, замена сломанных турбокомпрессоров также может быть дорогостоящей, например, турбокомпрессоры Mercedes-Benz AMG, замена которых стоит более 15 000 долларов.

Почему так много автомобилей имеют турбокомпрессоры?

По мере ужесточения требований к топливу и выбросам производителям приходится уменьшать рабочий объем двигателей в своих моделях. Чтобы поддерживать уровень мощности для этих все более тяжелых транспортных средств, автопроизводители перешли на двигатели с турбонаддувом для дополнительной мощности.

Что такое Ford EcoBoost?

Ford EcoBoost — это просто название продукции бренда с турбонаддувом. Компания Ford нанесла название EcoBoost на такие автомобили, как Ford Mustang, пикапы F-Series, новый Bronco и вплоть до суперкара Ford GT.

Получите свой собственный комплект турбокомпрессора от Vivid Racing

Ваш автомобиль не может достаточно быстро взбодриться? Вас чуть не убил сливающийся полуавтомат, когда ваша поездка изо всех сил пытается разогнаться до 60 миль в час? Вы тоскуете по сладкому, сладкому свисту турбокомпрессора на пике наддува? Что ж, тогда вам может подойти турбонагнетатель.Вот почему мы сотрудничаем с нашими друзьями из Vivid Racing, чтобы сделать вас турбонаддувом! Нажмите здесь, чтобы ознакомиться с линейкой комплектов турбокомпрессоров Vivid Racing.

Рекомендуемые изделия для турбокомпрессоров

Mishimoto MMSK Ручка переключения передач с весами

Комплект керамических тормозных колодок Akebono ProACT Ultra-Premium

Torco F500010TE Неэтилированный топливный ускоритель

Есть вопрос? Есть профессиональный совет? Отправьте нам сообщение: [email protected]

Что значит «с турбонаддувом»? — Доу Хонда

2014 Honda Транспортные средства 29 августа 2016 г.

Что такое двигатель с турбонаддувом?

Двигатель с турбонаддувом — это двигатель, в котором для приведения в действие транспортного средства используется метод принудительной индукции с турбинным приводом.Этот метод заставляет переработанные автомобильные выхлопные газы попадать в камеру сгорания двигателя. В двигателе с турбонаддувом может проходить на 50% больше воздуха, чем в традиционном двигателе. Это означает, что двигатели с турбонаддувом могут быть меньше традиционных двигателей, но при этом производить такую ​​же мощность. Это то, что дает автомобилям с турбонаддувом способность быстро и мощно ускоряться.

Как работает двигатель с турбонаддувом?

Турбокомпрессор соединен с выпускным коллектором двигателя.Выхлопные газы попадают в турбокомпрессор и раскручивают турбины внутри. Затем он всасывается в компрессор, который нагнетает воздух в цилиндры двигателя. Чем больше воздуха проходит через цилиндры, тем большую мощность может выдавать двигатель. На приведенном выше рисунке показано, как турбокомпрессор работает с двигателем Honda VTEC Turbo.

Если вы хотите увидеть образец Honda с турбонаддувом, нажмите здесь, чтобы увидеть Civic EX-T 2016 года в выставочном зале Dow Honda!

Если вы хотите увидеть двигатель с турбонаддувом в действии, нажмите здесь, чтобы заказать тест-драйв!

Если у вас есть вопросы, нажмите здесь, чтобы связаться с нами!

Посмотрите видео ниже, чтобы узнать о Honda 1.5л турбомотор!

Как это работает: турбонаддув | Вождение

Раньше турбокомпрессоры использовались в основном на мощных спортивных автомобилях. Они по-прежнему дают быстроходным автомобилям дополнительный прирост мощности, но автопроизводители все чаще используют их на двигателях меньшего размера для увеличения мощности, когда это необходимо, но с лучшей общей экономией топлива. Они также используются практически во всех дизельных двигателях для увеличения мощности.

Турбокомпрессор — это, по сути, воздушный насос, нагнетающий дополнительный кислород в двигатель по мере необходимости, чтобы он мог сжигать больше топлива для получения большей мощности.

Двигатели содержат поршни, которые перемещаются вверх и вниз в цилиндрах. Они вращают тяжелый центральный коленчатый вал так же, как ваши ноги двигаются вверх и вниз, чтобы привести в движение велосипед. Вращение коленчатого вала используется для поворота колес автомобиля.

Двигатель Audi 3,0 л V6 с двумя последовательно расположенными турбонагнетателями.

Все это движется паром воздуха и бензина в верхней части поршня.Когда он воспламеняется свечой зажигания, сила сгорания толкает поршень вниз, чтобы повернуть кривошип. Сгоревшие газы затем удаляются как выхлопные газы.

Каждый поршень скользит вниз в начале своего цикла, создавая вакуум. В двигатель без турбонаддува, известный как безнаддувный, воздух врывается внутрь при открытии впускного клапана, но он может заполнить цилиндр только при атмосферном давлении. Сжигание большего количества топлива дает больше мощности, но поскольку смесь топлива и воздуха должна быть точной для правильной работы двигателя, добавление большего количества бензина не сработает, и цилиндр не сможет втянуть лишний воздух.

В двигателе с турбонаддувом турбонагнетатель нагнетает больший объем воздуха под давлением, и компьютер транспортного средства отвечает, добавляя правильное количество дополнительного топлива.

Турбина приводится в движение выхлопными газами. Одна сторона турбонагнетателя расположена у выпускного коллектора, другая — у воздухозаборника двигателя, и он содержит два небольших вентилятора, соединенных валом. Когда выхлоп проходит через турбонагнетатель, он вращает один вентилятор, называемый турбиной. Это, в свою очередь, вращает второй вентилятор, называемый компрессором, который всасывает свежий воздух, нагнетает его и нагнетает в двигатель.Разница между атмосферным давлением и давлением воздуха, обеспечиваемым турбонаддувом, называется наддувом и измеряется в фунтах на квадратный дюйм (psi).

Вместо турбонагнетателя в некоторых транспортных средствах используется нагнетатель, который также нагнетает воздух, но механически работает от коленчатого вала двигателя, а не от выхлопных газов.

В разрезе турбокомпрессор показаны вентиляторы турбины и компрессора, соединенные валом.

Одна из проблем с турбонаддувом заключается в том, что воздух нагревается при сжатии, а это противоположно тому, что вы хотите.Холодный воздух более насыщен кислородом, поэтому его можно смешивать с большим количеством топлива и при этом правильно сгорать в цилиндре. Автопроизводители добавляют к турбо-системе теплообменник, называемый промежуточным охладителем, который поглощает тепло и снижает температуру воздуха, поступающего в цилиндры двигателя.

Вентиляторы турбонагнетателя вращаются очень быстро — до 250 000 оборотов в минуту или более — и существует вероятность слишком высокого давления в двигателе при максимальной нагрузке. В этом случае открывается клапан, называемый перепускным клапаном, который отводит часть выхлопных газов от турбины.

Турбокомпрессор не нагнетает двигатель постоянно. Если вы едете умеренно, достаточно воздуха, всасываемого при атмосферном давлении, и двигатель работает как безнаддувный. Когда вы нажимаете на дроссельную заслонку, двигатель работает сильнее и создает большее давление выхлопных газов. Это раскручивает турбокомпрессор, который, в свою очередь, ускоряет двигатель, который, в свою очередь, получает больше топлива — вот почему эти двигатели малого рабочего объема могут внезапно стать намного более жаждущими, чем ожидалось, когда вы их сильно водите.(Положительным моментом является то, что дополнительный кислород имеет тенденцию более полно сжигать топливо в цилиндре, повышая эффективность двигателя и уменьшая вредные выбросы.)

Турбокомпрессор также создает головную боль для инженеров, поскольку он не сразу работает на полную мощность. . Существует небольшая задержка между моментом, когда вы опускаете ногу, и тем, когда турбокомпрессор набирает скорость, достаточную для обеспечения наддува и желаемого ускорения. Это известно как турбо-задержка.

Раньше он был гораздо более заметным в старых автомобилях, но сегодня автопроизводители используют другие методы, чтобы уменьшить его.Используются легкие лопатки турбины, поэтому для их вращения требуется меньшее давление. Турбокомпрессоры меньшего размера раскручиваются быстрее, и некоторые автопроизводители устанавливают два из них на двигатель, комбинируя маленький для быстрого начального наддува с более крупным, который может обеспечить большую мощность при более высоких оборотах двигателя. Несколько автопроизводителей, включая Volvo, для достижения этой цели используют в двигателе как нагнетатель с механическим приводом, так и турбонагнетатель с приводом от выхлопных газов.

Другая технология — это изменяемая геометрия, которая автоматически регулирует направление потока выхлопных газов в турбинное колесо в зависимости от частоты вращения двигателя и требований к мощности.

Двигатели с турбонаддувом, как правило, не требуют какого-либо дополнительного обслуживания, кроме рекомендованной замены масла в автомобиле и замены свечей зажигания. Некоторые более новые двигатели с турбонаддувом отлично работают на бензине обычного качества, но проверьте руководство пользователя на предмет требований к премиум-классу.

Большинство автопроизводителей просто говорят «с турбонаддувом», но некоторые используют собственные названия, такие как Audi TFSI (для стратифицированного впрыска топлива с турбонаддувом) или Ford EcoBoost. Если вы не уверены, перед покупкой поинтересуйтесь, турбовый ли это.

Турбонаддув в безнаддувном двигателе?

Распространено заблуждение, что установить турбокомпрессор так же просто, как прикрутить его болтами!

Некоторые думают, что в 99% случаев, будь то бензиновый или дизельный двигатель, просто никогда не было разработано, чтобы справиться с таким увеличением мощности и крутящего момента. Итак, прежде чем вы даже начнете думать о подборе и установке турбокомпрессора, вы должны сначала подумать о двигателе.

Основные различия между безнаддувным двигателем и двигателем с турбонаддувом: степень сжатия, профиль распределительного вала, заправка топливом, момент зажигания, тип поршней и прочность некоторых вращающихся частей.

Турбокомпрессор в качестве компонента двигателя может довольно легко увеличить выходную мощность на 30%, а в некоторых случаях — до 100%. Поэтому первое, на что стоит обратить внимание, — это сам двигатель.

Способен ли двигатель выдерживать такое увеличение в его нынешнем состоянии? Была ли она способна, когда была новой? Точно так же сцепление, трансмиссия и тормоза справляются со своей задачей?

Чтобы провести переоборудование двигателя без наддува, необходимо провести следующие модификации двигателя для эффективного завершения модернизации:

Распределители и поршни

Изготовление впускных и выпускных коллекторов для конкретного применения.Степень сжатия двигателя следует проверить и при необходимости снизить, в идеале она должна составлять от 7,5: 1 до 8,5: 1 (обычно), чтобы можно было использовать любое значительное давление наддува.

Это может быть достигнуто в одном из трех способов: преимущественно фитинг кованых поршней низкого сжатия, обработки верхней части стандартных поршней или установки более толстой прокладка головки или распорной пластины.

Спецификация распределительного вала

Следует также проверить спецификацию распределительного вала, чтобы убедиться, что продолжительность и перекрытие клапанов не слишком велики для применения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *