ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

ДВС — четырехтактный двигатель, принцип работы

Четырехтактный двигатель был впервые продемонстрирован Николаусом Отто в 1876 году и поэтому он также известен как цикл Отто.  Технически правильный термин — четырехтактный цикл. Четырехтактные двигателя является наиболее распространенным типом двигателя в настоящее время. Они установлены практически на всех легковых автомобилях и грузовиках.

Четырехтактный двигатель был впервые продемонстрирован Николаусом Отто в 1876 году и поэтому он также известен как  цикл Отто.  Технически правильный термин — четырехтактный цикл. Четырехтактные двигателя, возможно, является наиболее распространенным типом двигателя в настоящее время. Они установлены на всех легковых автомобилях и грузовиках.  

 

Четыре такта цикла — это впуск, компрессия, расширение и выпуск выхлопных газов. Каждому соответствует один полный ход поршня, поэтому полный цикл требует двух оборотов коленчатого вала.

Такт впуска.
Во время впуска, поршень движется от ВМТ (верхней мертвой точки) вниз к НМТ (нижней мертвой точке), засасывая свежий заряд топливо-воздушной смеси. Изображенный на рисунке двигатель имеет ‘тарельчатый’ впускной клапан, который открывается потоком всасываемого свежего заряда. Некоторые ранние двигатели работали именно таким образом. Однако, в современных двигателях впускной клапан открывается кулачком распределительного клапана.

Такт сжатия.
После достижения НМТ поршень начинает двигаться вверх к ВМТ, давление в цилиндре возрастает, впускной клапан закрывается и происходит сжатие топливо-воздушной смеси.

Такт расширения, или рабочий ход.
Незадолго до конца цикла сжатия топливо-воздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень.

При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом.

Такт выпуска.
После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается, и цикл начинается сначала.

Анимационные рисунки показывают основной принцип работы одного цилиндра четырех-тактного двигателя.

{seyretpic id= 20 align=center}


4 такта работы двигателя внутреннего сгорания | Гидравлика и пневматика

Большинство современных двигателей внутреннего сгорания — четырехтактные, это значит, что всю из работу можно разделить на 4 этапа — такта. Разобравшись в том, что происходит на каждом из этапов легко понять, как работает двигатель.

Двигатель внутреннего сгорания — ДВС

Двигатель внутреннего сгорания — ДВС

Прежде, чем перейти непосредственно к работе двигателя отметим основные элементы его конструкции, это поможет правильно понять описание его работы.

Элементы конструкции ДВС

Поршни перемешаются в цилиндрических расточках, выполненных в блоке цилиндров. Поршни соединены с коленчатым валом при помои шатунов. Газораспределительный механизм с клапанами позволяет соединять рабочую камеру с впускным или выпускным коллектором. Воспламенить топливную смесь позволяет свеча.

Устройство двигателя внутреннего сгорания

Устройство двигателя внутреннего сгорания

Цикл работы двигателя

Основные элементы конструкции двигателя определены, теперь можно разобраться в работе двигателя, как упоминалось ранее цикл его работы состоит из четырех тактов, рассмотрим подробнее каждый из них.

Такт 1

Первый такт работы ДВС

Первый такт работы ДВС

Чтобы двигатель мог, что то сжечь, надо сначала этим чем-то его заправить. В ДВС это смесь воздуха и топлива. При движении поршня вниз объем рабочей камеры увеличивается, значит давление в ней падает. Клапаны соединяющие рабочую камеры с впускным коллектором открываются и воздух заполняет ее. Топливо распыляется с помощью форсунки.

Такт 2

Второй такт

Второй такт

Полученную смесь надо сжать, чтобы при воспламенении она расширилась и переместила поршень. Для осуществления сжатия поршень нужно переместить вверх, клапаны в этот момент должны быть закрыты.

Такт 3

Третий такт

Третий такт

На третьем этапе свеча дает искру, которая воспламеняет смесь, она нагревается и расширяется, толкая поршень вниз. Поршень вращает коленвал.

Такт 4

Четвертый такт

Четвертый такт

От продуктов горения нужно избавиться. Для этого открываются клапаны со стороны выпускного коллектора, поршень движется вверх вытесняя газы в выхлопную систему.

После 4 такта вновь наступает первый.

Количество поршней

Таким образом поршень только на третьем этапе вращал коленчатый вал, а на всех остальных наоборот коленвал перемещал поршень. Но откуда на валу возьмется энергия для вращения вала. Можно использовать не один поршень, а несколько. Пожалуй,самым логичным решением будет установка четырех поршней (хотя их может быть и 3, и 6, и 12). Если в двигателе 4 поршня, то каждый из них в один момент находится на разных этапах:

  • первый — всасывает воздух;
  • второй — сжимает смесь;
  • третий — осуществляет рабочий ход;
  • четвертый — вытесняет выхлопные газы.

Для обеспечения плавной работы на валу двигателя может быть установлен маховик.

Одноцилиндровый четырехтактный двигатель принцип работы

Как Отто двигатель разрабатывал

Агрегат, изобретенный ученым по имени Альфонс Бо де Роша, а затем построенный немецким инженером Николаусом Отто в 1867 году, в те годы считался максимумом технологичности и практически совершенством. Аналогов для него просто не существовало. Мотор был очень недорогим в эксплуатации, имел компактные размеры, а также ему не нужно было частое обслуживание.

Работа четырехтактного двигателя была построена по четкому алгоритму. Сегодня его называют «циклом Отто». В 1875 г. Николаус Отто в своей компании выпускал больше, чем 600 двигателей за год.

Читать также: Выпрямитель напряжения с 220 на 12 вольт


Ракетный двигатель

Ракетный двигатель — простейшие из своего семейства, поэтому начнем с него.

Для того, что функционировать в открытом космосе ракетные двигатели для своей работы требуют запас кислорода, ровно как и топлива. Кислородно-топливная смесь впрыскивается в камеру сгорания где она беспрерывно сгорает. Газ под большим давлением выходит через сопла, вызывая тягу в обратном направлении.

Чтобы опробовать этот принцип самому, надуйте игрушечный шарик и выпустите его из рук — ракетный двигатель работает почти так-же;)

От четырехтактного ДВС до автомобиля

В команде инженеров, которые работали над созданием агрегата, был один талантливый парень – Готлиб Даймлер.

Он тогда горел идеей создания на базе этого мотора настоящего автомобиля. Но Отто не желал модернизировать уже имевшийся успешный мотор. Даймлер был вынужден уйти из проекта, но желание построить автомобиль никуда не делось.

В итоге вместе со своим другом и единомышленником в 1889 году Даймлер таки собирает автомобиль, в основе которого лежит бензиновый четырехтактный двигатель, функционирующий по алгоритму Отто.

Основные отличия четырехтактных моторов

В двухтактном двигателе поршневые и цилиндровые пальцы, коленчатый вал, подшипники и компрессионные кольца смазываются за счет масла, которое доливают в топливо. В четырехтактном моторе все узлы установлены в масляной ванне. Это существенное отличие. Поэтому в четырехтактном агрегате нет необходимости смешивать масла и бензин.

Преимущества системы заключаются в том, что на зеркале в цилиндрах и на стенках глушителя количество нагара значительно меньше. Еще одно отличие – в двухтактных двигателях в выхлопную трубу попадает горючая смесь.

Отличие 4-тактного двигателя от 2-тактного

Цикл работы ДВС – это несколько процессов, которые направлены на получение порции силы, которая будет воздействовать на коленвал. Цикл этот состоит из впрыска топлива, сжатия, зажигания топливной смеси, расширения газов, выпуска.

Такт в двигателе внутреннего сгорания – это один ход поршня либо вверх, либо вниз. В двухтактном моторе за один оборот коленвала совершается два такта. Когда газы расширяются, поршень совершает полезную работу.

Агрегаты, где рабочий ход происходит в два такта, называют двухтактными. А если за два оборота коленчатого вала совершается четыре такта, то это уже четырехтактный двигатель.

И те, и другие могут быть как бензиновыми, так и для дизельного топлива. Чтобы понять особенности конструкции и эксплуатации, различия между разными моторами, нужно рассмотреть принципы их работы.

Работа двигателя

Как уже было отмечено работа четырехтактного мотора состоит из четырех тактов поршня или из двух оборотов коленвала.

Этапы работы :

  1. Впуск. Поршень движется в нижнюю сторону, открывая клапан впуска. Из карбюратора горючая смесь поступает в цилиндр. Когда поршень достигает нижнего положения, клапан впуска закрывается.
  2. Сжатие. Поршень движется вверх, провоцируя сживание горючей смеси. Когда он приближается к верхней точке, сжатый бензин возгорается.
  3. Расширение. Бензин возгорается и сгорает. В результате чего происходит растяжение горючих газов, и поршень движется вниз. При этом два клапана оказываются закрытыми.
  4. Выпуск. Коленчатый вал по инерции продолжает двигаться вокруг своей оси, а поршень движется вверх. Вместе с этим открывается клапан выпуска, и выхлопные газы поступают в трубу. При прохождении клапаном мертвой точки, клапан впуска закрывается.

Отличия двухтактного и четырехтактного двигателя

Среди основных отличий, как уже говорилось, выделяется разная система газообмена.

В двухтактном же моторе и процесс заполнения камеры сгорания, и ее очистка осуществляются вместе с тактом сжатия и расширения. Для этого в цилиндре имеются специальные технологические отверстия для впуска смеси и выброса газов. В агрегатах с такой конструкцией нет механизма ГРМ, что делает эти моторы гораздо проще и легче.

Читать также: Вертолет из бензопилы видео

Конструкция

Сегодня 4-х тактные моторы более сложны по конструкции. Так, например:

  • коленвал оснащают массивным маховиком, обеспечивающим за счет инерции плавное перемещение поршней;
  • блок цилиндров оснащается газораспределительным механизмом;
  • запуск мотора осуществляется с помощью стартера;
  • беспроблемное функционирование всех узлов обеспечивается многочисленными вспомогательными устройствами (системы управления, смазки, впрыска топлива, охлаждения и пр.).

Одноцилиндровый четырехтактный двигатель

Моторы этой конструкции очень распространены. Их можно найти не только в автомобилях, но и в мотоциклах, скутерах, тракторах, мотоблоках. В Китае производят литровые двигатели, которые используются для работы с мотоблоками.

Одно из главных достоинств таких ДВС – это очень маленькое отношение площади камеры сгорания к объему. Это дает минимальные потери тепловой энергии. КПД в таких двигателях очень высокий.

Устройство аналогично многоцилиндровым двигателям. Ничего нового здесь нет.

Этот четырехтактный двигатель предназначен для применения в утилитарных мотоциклах, мопедах, скутерах.

Двигатели типа OHC

Двигатели типа OHC на сегодняшний день самые распространенные в автомобилестроении. Чего нельзя сказать о применении этой компоновки в небольших одноцилидровых бензиновых двигателях. Аббревиатура OHC расшифровывается как overhead-camshaft, в переводе с английского — “верхнее расположение распредвала”. В таких силовых агрегатах кулачки распределительного вала давят на клапаны непосредственно через толкатели, реже — через коромысла. Привод от коленвала к распредвалу чаще всего осуществляется цепью или зубчатым ремнем. Достоинства такого двигателя — четкая работа в очень большом диапазоне оборотов, экономичность, надежность, низкая шумность, большой моторесурс. Такие двигатели могут быстро набирать обороты и столь же быстро сбрасывать их, что позволяет двигателю быстро приспосабливаться к часто меняющейся нагрузке и не снижать заданную мощность. В двигателях типа OHC максимально используются положительные качества электронной системы зажигания.. Камера сгорания такого двигателя имеет все достоинства двигателя OHV, а система газораспределения заметно легче и не содержит деталей, которые теряют жесткость при больших оборотах или при резком изменении оборотов двигателя.

Одноцилиндровые двигатели с такой компоновкой появились в программе основных производителей относительно недавно (во второй половине 90-х годов) и в модельном ряду занимают пока довольно скромное место. У Honda это серия GC, у Subaru-Robin — серия EX, у Tecumseh модель ENDURO 70 XL/C G. Скорее всего производство таких двигателей будет поступательно расти в ближайшие годы, модельный ряд будет расширяться и они займут достойное положение в производстве бытовой и професcиональной техники с ДВС благдаря своей надежности, универсальности и экономичности.

Собственно благодаря этим качествам двигатели OHC завоевали свое главенствующее положение в автомобилестроении. Они (или их модификации с двумя распредвалами DOHC) установлены на подавляющем большинстве современных автомобилей, включая все модели Жигулей.

Четырехтактники на мотоциклах

Да, эти моторы очень популярны среди производителей хороших, серьезных мотоциклов. Основное отличие – это дизайн. Если в автомобилях двигатель спрятан под капотом и дизайн его особо не разрабатывали, то в мире мотоциклов внешний вид силового агрегата имеет серьезное значение.

Вот уже более 15 лет в моде двухцилиндровый четырехтактный двигатель мотоцикла, представленный сегодня множеством моделей с самым разным объемом. Отличить такие двигатели можно по характерному звуку.

Однако среди мотоциклистов особой популярностью пользуются рядные четырехцилиндровые агрегаты. Эти моторы лишь немного опережают автомобильные ДВС. К примеру, схема на четырех клапанах лишь недавно получила признание в строительстве автомобилей. А на мотоциклах она использовалась еще с 70-х.

Для мотоцикла четырехтактник является более актуальным. Так, эти ДВС более экономичны, эффективны, экологичны, чем двухтактные агрегаты. Это – преимущества данных двигателей на мотоциклах. Также двигатели для мотоциклов сделаны таким образом, чтобы работать на высоких оборотах. Максимальная мощность выдается на оборотах до 14-16 тысяч на современных моделях.

Где применяется

4-х тактные моторы применяются в нашей повседневной жизни очень широко. Их мощность напрямую зависит от объема и количества цилиндров. Устанавливают ДВС в автомобилях и самолетах, тракторах и тепловозах. Применяются они также на судах морского и речного флота.

На 4-х тактные силовые агрегаты обратили внимание и энергетики. Используют их для питания стационарных и аварийных электрогенераторов, установленных в местах, где линии электропередач подвести невозможно или экономически нецелесообразно. Кроме того, такие генераторы устанавливают на объектах, где отключение подачи электроэнергии невозможно (больницы, банки, воинские части и пр.).

Новые технологии по старому принципу

С того самого момента, как изобрели четырехтактный двигатель, он постоянно совершенствовался.

Произошли изменения и в системе питания. Современные моторы больше не используют карбюратор – везде инжекторы и электроника.

Чтобы улучшить наполняемость камер сгорания воздухом, применяют системы наддува. Это позволяет увеличить мощность при малом объеме, а также снизить расход топлива.

Но при всем этом принцип действия ДВС остается все тем же, каким и был.

Циклы работы поршневых ДВС

Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные.

Рабочий цикл в поршневых двигателях внутреннего сгорания состоит из пяти процессов: впуска, сжатия, сгорания, расширения и выпуска. В двигателе рабочий цикл может быть осуществлен по следующей широко применяемой схеме:

1. В процессе впуска поршень перемещается от верхней мертвой точки (в.м.т.)

к
нижней мертвой точке (н.м.т.)
, а освобождающееся надпоршневое пространство цилиндра заполняется смесью воздуха с топливом. Из-за разности давлений во впускном коллекторе и внутри цилиндра двигателя при открытии впускного клапана смесь поступает (всасывается) в цилиндр в момент времени, называемый углом открытия впускного клапана φа.

Воздушно-топливная смесь и продукты сгорания (всегда остающиеся в объёме пространства сжатия от предыдущего цикла), смешиваясь между собой, образуют рабочую смесь. Тщательно приготовленная рабочая смесь повышает эффективность сгорания топлива, поэтому её подготовке уделяется большое внимание во всех типах поршневых двигателей.

Количество воздушно-топливной смеси, поступающее в цилиндр за один рабочий цикл, называется свежим зарядом, а продукты сгорания, остающиеся в цилиндре к моменту поступления в него свежего заряда — остаточными газами.

Чтобы повысить эффективность работы двигателя, стремятся увеличить абсолютную величину свежего заряда и его весовую долю в рабочей смеси.

2. В процессе сжатия оба клапана закрыты и поршень, перемещаясь от н.м.т. к в.м.т. и уменьшая объём надпоршневой полости, сжимает рабочую смесь (в общем случае рабочее тело). Сжатие рабочего тела ускоряет процесс сгорания и этим предопределяет возможную полноту использования тепла, выделяющегося при сжигании топлива в цилиндре.

Двигатели внутреннего сгорания строятся с возможно большей степенью сжатия, которая в случаях принудительного зажигания смеси достигает значения 10—12, а при использовании принципа самовоспламенения топлива выбирается в пределах 14—22.

3. В процессе сгорания происходит окисление топлива кислородом воздуха, входящего в состав рабочей смеси, вследствие чего давление в надпоршневой полости резко возрастает.

В рассматриваемой схеме рабочая смесь в нужный момент вблизи в.м.т. поджигается от постороннего источника с помощью электрической искры высокого напряжения (порядка 15 кв). Для подачи искры в цилиндр служит свеча зажигания, которая ввер­тывается в головку цилиндра.

Для двигателей с воспламенением топлива от тепла, выделяющегося от предварительно сжатого воздуха, запальная свеча не нужна. Такие двигатели снабжаются специальной форсункой, через которую в нужный момент в цилиндр впрыскивается топливо под давлением в 100 ÷ 300 кГ/см² (≈ 10—30 Мн/м²) и более.

4. В процессе расширения раскаленные газы, стремясь расшириться, перемещают поршень от в.м.т. к н.м.т. Совершается рабочий ход поршня, который через шатун передает давление на шатунную шейку коленчатого вала и проворачивает его.

5. В процессе выпуска поршень перемещается от н.м.т. к в.м.т. и через второй открывающийся к этому времени клапан, выталкивает отработавшие газы из цилиндра. Продукты сгорания остаются только в объёме камеры сгорания, откуда их нельзя вытеснить поршнем. Непрерывность работы двигателя обеспечивается последующим повторением рабочих циклов.

Процессы, связанные с подготовкой рабочей смеси к сжиганию её в цилиндре, а также освобождением цилиндра от продуктов сгора­ния, в одноцилиндровых двигателях осуществляются движением поршня за счёт энергии маховика, которую он накапливает в про­цессе рабочего хода.

В многоцилиндровых двигателях вспомогательные ходы каждого из цилиндров выполняются за счёт работы других (соседних) цилиндров. Поэтому эти двигатели в принципе могут работать без маховика.

Для удобства изучения рабочий цикл различных двигателей расчленяют на процессы или, наоборот, группируют процессы рабочего цикла с учетом положения поршня относительно мертвых точек в цилиндре. Это позволяет все процессы в поршневых двигателях рассматривать в зависимости от перемещения поршня, что более удобно.

Часть рабочего цикла, осуществляемая в интервале перемещения поршня между двумя смежными мертвыми точками, называется тактом.

Такту, а следовательно, и соответствующему ходу поршня присваивается название процесса, который является основным при данном перемещении поршня между двумя его мертвыми точками (положениями).

В двигателе каждому такту (ходу поршня) соответствуют, например, вполне определённые основные для них процессы: впуск, сжатие, расширение, выпуск. Поэтому в таких двигателях различают такты: впуска, сжатия, расширения и выпуска. Каждое из этих четырёх названий соответственно присваивается ходам поршня.

В любых поршневых двигателях внутреннего сгорания рабочий цикл складывается из рассмотренных выше пяти процессов по ра­зобранной выше схеме за четыре хода поршня или всего за два хода поршня. В соответствии с этим поршневые двигатели подразделяют на двух- и четырёхтактные.

Чем отличается двухтактный двигатель от четырехтактного

Устройство и принцип работы одноцилиндрового 4х-тактного двигателя

Принцип работы двигателя внутреннего сгорания изучают в школе, но я все же опишу его.

Первый такт, впуск. Поршень идет вниз, клапан впуска открывается, и топливная смесь поступает из карбюратора в цилиндр. Когда поршень достигает нижнего положения, клапан впуска закрывается.

Читать также: Как оформить натяжной потолок точечными светильниками

Второй такт, сжатие. Поршень идет вверх, топливная смесь сжимается. Кокда поршень находится в нескольких миллиметрах от верхней мертвой точки (ВМТ), свеча воспламеняет топливо, сжатое поршнем.

Третий такт, рабочий ход (расширение). После воспламенения горючего оно сгорает, горячие газы быстро расширяются, толкая поршень вниз (оба клапана закрыты).

Четвертый такт, выпуск. По инерции коленвал продолжает свое вращение (для равномерности вращения на коленвале установлены грузы – щеки коленвала), поршень идет наверх. Одновременно открывается выпускной клапан, и отработавшие газы выходят в выхлопную трубу. При достижениии поршнем ВМТ, выпускной клапан закрывается.

Далее повторяются все четыре такта.

Изобретатель 4-тактного двигателя внутреннего сгорания (как впрочем, и двухтактного) немец Николаус Август Отто (1832-1891). Поэтому ДВС иногда называют двигателем Отто.

Из соображений экономичности, все больше лодочных моторов оснащается четырехтактными двигателями. Хотя эти моторы при одинаковом объеме цилиндра уступают по мощности двухтактным, они обладают своими преимуществами:

-экономичность расхода топлива

-четырехтактный двигатель работает тише и устойчивей.

В отличие от двухтактного двигателя, в котором смазка коленвала, подшипников коленвала, компрессионных колец, поршня, пальца поршня и цилиндра осуществляется благодаря добавлению масла в топливо; коленвал четырехтакного двигателя находится в маслянной ванне. Благодаря этому Вам не надо смешивать бензин с маслом или доливать масло в специальный бачок (на моделях двухтактных лодочных моторов с раздельной системой смазки). Достаточно залить чистый бензин в топливный бак и можно ехать, при этом отпадает необходимость покупки специального масла для 2-тактных двигателей. Так же на зеркале поршня и стенках глушителя и выхлопной трубы образуется значительно меньше нагара. К тому же, в 2-тактном двигателе происходит выброс несгоревшей топливной смеси в воду, что объясняется его конструкцией.

На коленвале установлена ведущая звездочка, обеспечивающая (через цепь) вращение распределительного вала, находящегося в головке цилиндра. Этот вал определяет, когда должен быть открыт или закрыт один из двух клапанов (клапаны впуска и выпуска), в зависимости от положения поршня. На распредвале находятся кулачки, которые задействуют коромысла клапанов. (на схеме изображен распределительный вал)

Коромысла нажимают на тот или иной клапан, открывая его. Между регулировочным болтом коромысла и клапаном должен быть зазор, так называемый тепловой зазор. При нагревании металл расширяется, и если тепловой зазор мал или его нет совсем, то клапаны не будут плотно закрывать впускной или выпускной каналы, поэтому так важно регулировать зазор клапанов. Выхлопные газы горячее топливной смеси, и выпускной клапан нагревается (а следовательно и расширяется) больше, чем впускной. Этим объясняется разница зазоров на впускном и выпускном клапанах.

Двигатели внутреннего сгорания должны были заменить промышленную паровую машину. Однако энтузиасты, которые работали над созданием мотора, смогли ощутить потенциал, который заложен в него. Изобретателям удалось отыскать способы, которые позволили в значительных пределах увеличить мощность агрегата без существенного увеличения массы. Так, Николаус Отто сыграл одну из главных ролей в этом проекте.

ХарактеристикаЧетырехтактный двигательДвухтактный двигатель
МощностьМеньшая мощность из-за большего количества тактов. Наддув дает дополнительную мощность.При одинаковых оборотах, диаметре цилиндра и хода поршня мощность (теоретически) в 2 раза больше. На практике, из-за механических потерь – примерно в 1,5 раза.
Эксплуатационные качестваБольший эксплуатационный ресурс. Процесс ремонта может протекать сложнее, должен осуществляться с использованием сложного оборудования.Простота конструкции, ремонта. Отсутствие сложных устройств: карбюратора, клапанов. Преимущество по показателю равномерности вращения коленвала. Меньший эксплуатационный ресурс из-за более высокой температурной нагрузки на поршневой механизм.
ЭкономичностьНизкий, по сравнению с двухтактным расход топлива и масла. Более высокие затраты на ремонт.Высокие затраты мощности на продувочный насос, недостаточная очистка цилиндра от выхлопных газов. Минус – высокий расход топлива и масла, которое приходится заливать в топливо.
ВесБольше двухтактного.Меньший вес за счет отсутствия крупногабаритных сложных деталей.
РазмерБольше двухтактного.Меньший размер за счет отсутствия крупногабаритных сложных деталей.
ЦенаВыше двухтактного.Ниже четырехтактного.
Сфера примененияДвигатели средней и большой мощности, в том числе стационарные. Используются как двигатель под инверторный генератор. Популярна их установка на снегоходы «Рысь» и «Тайга», мотороллеры «Муравей».Плавсредства, сельскохозяйственная и мототехника, малолитражные автомобили.

Таким образом, четырехтактные двигатели дороже сопоставимых по объему двухтактных и сложнее в эксплуатации. В тоже время они имеют больший срок эксплуатации и более экономичны. Четырехцилиндровый 4 тактный двигатель часто ставится на автомобили и тракторы, на инвертор-генераторы.

ВАЖНО! При выборе двигателя стоит рассчитать планируемый срок его эксплуатации. Если это техника для сельскохозяйственных работ, хорошо будет сделать расчет – за какой срок вложения могут окупиться.

Турбореактивный двигатель

Турбореактивный двигатель работает по тому-же принципу что и ракетный, с той лишь особенностью, что необходимый для горения кислород он берет из атмосферы. По своей конструкции он наиболее эффективен на больших высотах с разряженным воздухом.

Момент схожести: топливо беспрерывно сгорает в камере сгорания как и в ракетном. Расширевшийся газ покидает камеру сгорания через сопла, образуя тягу в обратном направлении.

Отличия: На своем пути из сопла некоторое количество давления газа ипользуется, чтобы раскрутить турбину. Турбина — это серия винтов, соединенныходним валом. Между каждой парой винтов находится статор (направляющий аппарат компрессора). Этот аппарат помогает газу проходить через лопасти винтов более эффективно.

Перед двигателем турбинный вал раскручивает компрессор. Компрессор работает схоже с турбиной, только в обратную сторону. Его функцией является повышение давления воздуха, попадающего в двигатель. Турбина выталкивает воздух, а компрессор засасывает.

Такты двигателя — Энциклопедия по машиностроению XXL

Из сказанного следует, что только в первом такте двигатель развивает движущую силу, а в остальных тактах движение поршня связано с преодолением сопротивлений. Таким образом, в первом такте движущимся массам необходимо сообщить запас кинетической энергии, при помощи которой в следующих тактах преодолеваются сопротивления. Для этого на коренном валу двигателя устанавливается маховое колесо с достаточно большим моментом инерции.  
[c.328]

Совокупность последовательных процессов, периодически повторяющихся в рабочем цилиндре, называется рабочим циклом, который может совершаться за два или четыре хода поршня (соответственно за один или за два оборота коленчатого вала). Таким образом, рабочий цикл может совершаться за два или четыре такта. Двигатель, в котором рабочий цикл совершается за два хода поршня, т. е. за два такта, называется двухтактным, за четыре хода поршня, т. е. за четыре такта, — четырехтактным.  [c.152]

Процессы, составляющие рабочий цикл двигателя, осуществляются преимущественно за период перемещения поршня из одной мертвой точки в другую. Каждое из указанных перемещений поршня (ход поршня) называется тактом. Двигатели, у которых рабочий цикл совершается за четыре хода поршня или за два оборота коленчатого вала, называются четырехтактными. Если же рабочий цикл осуществляется за два хода поршня или один оборот коленчатого вала, то такие двигатели называются двухтактными. Схема четырехтактного двигателя показана на фиг. 11-3.  [c.271]

Такты двигателя 18, 32, 66 Тележка автомобиля 9 Телескопическая стойка 204 Телескопический амортизатор 196 Температурный режим двигателя 44 Тепловой зазор 35 Термостат 46, 65 Ток высокого напряжения 90  [c.301]

Таким образом, цикл двигателя внутреннего сгорания образуется в результате четырех возвратно-поступательных ходов поршня, называемых тактами двигателя, вследствие чего такой двигатель называют четырехтактным. За четыре такта вал двигателя делает два полных оборота. Если у двигателя отсутствуют такты всасывания и выхлопа, то такой двигатель называют двухтактным. Вал двигателя делает один оборот.  

[c.157]

Уменьшение числа тактов двигателя т с четырех до двух увеличивает мощность на 65—75% при том же числе оборотов.  [c.209]

Коленчатый вал (рис. 88) воспринимает усилия от поршней и передает образующийся крутящий момент механизмам трансмиссии. Коленчатый вал состоит из коренных 16 и шатунных 15 шеек, носка 3, фланца 10 и противовесов 6. Шейки коленчатого вала соединяются щеками, которые с шатунными шейками образуют кривошипы коленчатого вала. Количество и расположение шеек зависят от числа и расположения цилиндров и числа тактов двигателя.  [c.115]

Соотношение скоростей вращения двигателя и М. устанавливается в зависимости от числа цилиндров, числа тактов двигателя и числа отрывов М. (табл. 2).  

[c.156]

Пневматический привод (рис. 197) служит для сТупенчатого поворота кулачкового вала группового переключателя. Посредством зубчатой передачи, имеющей соотношение зубьев) 1 12, коленчатый вал пневматического двигателя соединен с кулачковым валом. При каждом такте двигателя коленчатый вал поворачивается на 90°, а кулачковый вал при этом делает поворот на угол в 12 раз меньше, т. е. 7,5°. Это соответствует изменению положения вала на дну ступень.  [c.170]


К — коэфициент, учитывающий число тактов двигателей внутреннего сгорания или число рабочих сторон поршня в паровых машинах. Индикаторами называются приборы, применяемые при испытаниях поршневых машин для снятия индикаторной диаграммы. Последняя позволяет  [c.779]

Различие в коррозионной активности топлив проявляется главным образом в условиях высоких температур у камеры сгорания и выпускного такта двигателя за счет кислотной и газовой коррозии. Кислотную и газовую коррозию продуктами сгорания определяют прежде всего сернистые соединения, которые при сгорании образуют оксиды 80г 80з.  

[c.168]

Ст — количество тактов двигателя (два или четыре).  [c.90]

Во втором подходе при расчете нестационарного течения в цилиндре при движении поршня решаются одномерные нестационарные уравнения газовой динамики с учетом неравновесного протекания химических реакций. Закон движения поршня задается. Расчет течения в плоскости х может быть проведен для всех тактов двигателя. Численное решение осуществляется методом характеристик, поскольку система уравнений в этом случае является гиперболической.  [c.232]

У двухтактного двигателя отдельным процессам соответствуют (рис. 21.2, б) 0-1 — продувка и введение новой порции смеси-(-/-2 — сжатие (1-й такт) 2-3 — сгорание + 5- — расширение + -6) — выхлоп (2-й такт). В двухтактном двигателе очистку цилиндра от остаточных газов и наполнение его свежим зарядом выполняют продувочным воздухом через шлицы, открываемые поршнем.  

[c.178]

Третий ход иори(ия двигателя носит название такта всасывания. Вблизи верхней мертвой точки поршня во время второго такта (выхлопа) открывается вса-  [c.118]

Из условия работы видим, что цикл станка должен состоять из шести рабочих тактов, соответствующих прямому н обратному ходу каждого из трех ИМ. Начинается цикл прямым ходом ИМ2 в 1-м такте. Затем ИМ2 останавливается, а ИМЗ совершает прямой ход. В 3-м такте ИМЗ стоит, а ИМ2 делает обратный ход. В 4-м такте ИМЗ совершает обратный ход, возвращая рейку 4 назад. После этого в 5-м такте включаются ИМ1 и двигатель М, силовая головка / с вращающимся инструментом 8 подается на деталь J. В б-м такте механизм ИМ1 совершает обратный ход, возвращая головку 7 с инструментом в исходное положение.  [c.193]

Промежуточное звено 3 сложной реакции наиболее продолжительно по времени. В четырехтактном двигателе процесс расширения длится от 40 до 5 мкс. В определенный момент такта расширения происходит прекращение процесса окисления СО на промежуточной стадии, при этом даже в случае избытка кислорода в продуктах сгорания будет содержаться окись углерода в концентрациях, измеряемых несколькими десятыми долями процента по объему. В ОГ карбюраторного двигателя возможны концентрации СО до 10% по объему, ому способствует недостаток кислорода при переобогащении топливовоздушной смеси. Максимальные концентрации СО в камере сгорания дизеля могут достигать нескольких процентов но объему, но в ОГ их не более 0,2%. Это объясняется интенсивным догоранием СО в такте расширения и выпуска при общем избытке воздуха (кислорода),  [c.10]

За исключением такта впуска давление в картере бензинового двигателя значительно. меньше, чем в цилиндрах, поэтому часть свежего заряда и ОЕ прорываются через неплотности цилиндропоршневой группы из камеры сгорания в картер. Здесь они смешиваются с парами масла и топлива, смываемого со стенок цилиндра холодного двигателя. Картерные газы разжижают масло, способствуют конденсации воды, старению и загрязнению масла, повышают  

[c.12]

Рециркуляция применяется как в бензиновых двигателях, так и дизелях. Перепуск ОГ происходит из-за разности давлений в системе выпуска и впуска, регулирования степени рециркуляции — с помощью заслонок и клапанов. На полных нагрузках рециркуляцию применять нецелесообразно, так как значительно возрастают выбросы углеводородов, сажи, расход топлива (до 20%). Более эффективна межцилиндровая рециркуляция отработавших газов, когда ОГ переходят из цилиндра, в котором заканчивается такт выпуска, в цилиндр с тактом впуска. Каналы рециркуляции открываются поршнями в их положении у н.м.т. Высокая скорость перетекания газов способствует также интенсивному завихрению заряда в цилиндрах.  

[c.45]


Рассмотренный рабочий процесс совершается за четыре хода поршня (такта) или за два оборота вала. Такие двигатели называют четырехтактными.  [c.262]

Рабочим циклом называется совокупность характерных процессов, происходящих в двигателе в определенной последовательности во время его работы. Для четырехтактного двигателя внутреннего сгорания рабочий цикл состоит из четырех тактов (впуск горючей смеси, сжатие, рабочий ход, выпуск).  [c.56]

Фазовые углы назначают на основе анализа рабочих циклов машины. Например, в ДВС интервалы тактов принимают по положению поршня в предельных положениях в верхней и нижней мертвых точках (в. м. т. и и. м. т.), т. е. угол поворота коленчатого вала за время одного такта равен 180°. Моменты открытия и закрытия клапанов в ДВС называют фазами газораспределения. Они обеспечиваются кулачками на распределительном валу. Впускной клапан должен открываться до прихода поршня в в. м. т., т. е. с опережением на некоторый угол и, а закрываться с некоторым запаздыванием на угол 6 (рис. 18.5, Выпускной клапан открывается до прихода поршня в н. м. т., т. е. с опережением на угол у, а закрывается с запаздыванием на угол р. Конкретные величины углов опережения и запаздывания зависят от марки двигателя. Например, для ВАЗ-2106 (1=12° 6 = 40° у = 42° р=10° для ЗИЛ-130 а = 31° 6 = 83° у = 67° р = 47°.  [c.486]

Линия 01 этой диаграммы изображает такт всасывания горючей смеси. Линия /2 —такт ее сжатия, которое вследствие его быстротьь можно с хорошей точностью считать адиабатическим. В точке 2 смесь поджигается, и линия 23 изображает почти изохорический процесс нарастания давления, связанный с резким повышением температуры рабочих газов. Рабочий такт двигателя изображается линией 34, которая опять очень близка к адиабате. В конце рабочего такта открывается выхлопной клапан, и линия 41 изображает связанный с этим процесс почти изохорического падения давления до атмосферной величины. Поскольку температура рабочих газов в точке 4 все eijie вьппе окружающей, этот процесс сопровождается  [c.114]

Получился очень компактный и простой агрегат. При расширении газов сгоревшего топлива поршни толкают магнитные сердечники внутрь соленоидов (рабочийтакт). Но какая же сила заставляет выталкивать эти сердечники обратно из соленоидов при последующем (холостом) такте двигателя Это сила сжатого воздуха в воздушных буферах, установленных между рабочими цилиндрами и электрическими генераторами.  [c.130]

Ппуск — минимально допустимое пусковое число оборотов двигателя, мин а — число тактов двигателя  [c.410]

Работа тангенциальных сил затрачивается на преодоление сопротивления и изменение частоты вращения коленчатого вала. В период рабочего хода энергия подводится к системе, совершается полезная работа и увеличивается частота вращения коленчатого вала. В этот период избыточная энергия акуммулируется всеми вращающимися массами, главным образом маховиком и потребителем энергии, и возвращается в систему, когда ее не хватает при совершении других тактов двигателя. Чем больше момент инерции маховика и больше число цилиндров, тем равномернее вращение вала двигателя.  [c.69]

Направлени-я магнитных потоков, создаваемых этими шестью фазами в пределах 360°, представлены на рис. 3.8, в, где векторы 1,2,3 указывают направления магнитных потоков, создаваемых тремя фазами первой секции, а векторы 2, 3 — направления магнитных потоков, создаваемых тремя фазами второй секции. При подаче тока в первую фазу первой секции зубцы ротора устанавливаются точно напротив зубцов первого и четвертого полюсов, на которых находится обмотка первой фазы. При подаче тока во вторую фазу первой секции ротор повернется на 1/3 шага зубцов, т. е. на 6° так, что его зубцы окажутся напротив зубцов полюсов 2 5 (рис. 3.8, б). Если подать ток в третью фазу, то ротор повернется еще на 6°. Если подавать ток по очереди в обмотки второй секции, то ротор также будет поворачиваться на 6°, но со сдвигом на 3° относительно первой секции. Если ток подать сразу в первую фазу первой секции и в третью фазу второй секции, то ротор повернется на 1,5°, т. е. зубцы встанут между зубцами первой и второй секций. Таким образом, чередуя подачу тока то в одну фазу, то в две, получим непрерывное вращение шагового двигателя скачками по 1,5°. За 12 тактов двигатель повернется на 360/20 = 18°, т. е. один оборот он сделает за 240 тактов. Соответствующее чередование тока в обмотках шагового двигателя обеспечивается специальными кодовыми преобразователями, основными элементами которых являются счетчики импульсов со схемами обратных связей и мощные усилители, обеспечивающие ток в обмотках. При напряжении 48 В шаговый двигатель обеспечивает частоту вращения до 4000 мин- , что соответствует 16 ООО Гц.  [c.74]

Число зубцов у щестерен 22, 37, 24 и 23 подобрано так, что кулачковый валик вращается вдвое медленнее коленчатого вала. Такое соотношение чисел оборотов кулачкового валика и коленчатого вала необходимо потому, что в четырехтактном двигателе (о тактах двигателя см. ниже) каждый такт повторяется через два оборота. Таким образом, кулачки распределительного валика открывают каждый клапан один раз за два оборота коленчатого вала. .  [c.36]

На рис. 4 показана осциллограмма сигнала цилиндрического, Р2Т-датчика при частоте вращения двигателя 1200 об/мин, степени сжатия 6, полном сопротивлении нагрузки i b=110 МОм и и l=90 пФ для трех тактов двигателя. Показана также осциллограмма выходного сигнала лабораторного кварцевого пьезоэлектрического преобразователя давления Кистлера. Фактическая максимальная амплитуда напряжения равна 7 В при расчетной величине 20,9 В (3).  [c.24]

На рис. 5 представлена осциллограмма напряжения датчика для двух тактов двигателя при частоте вращения 1000 об/мин и степени сжатия 7. Детонация двигателя была отчетливо слышна. Заметим, что ширина полосы частот PZT-датчика вполне достаточна, чтобы детектировать частоту детопации. Электронный повторитель напряжения для PZT-датчика входит в режим насыщения при напряжении +10 В.  [c.24]


По числу тактов двигатели или дизели могут быть четырехтактные, у которых рабочий цикл осуществляется за четыре хода поршщя ИЛ1И два оборота коленчатого вала двухтактные — рабочий цикл осуществляется за два хода поршня или один оборот коленчатого вала.  [c.9]

Различают два типа поршневых ДВС — тырехтактные и д в ухт .а.к. цй е. У четырехтактного двигателя, индикаторная диаграмма которого изображена на рис. 21.2, а, отдельным процессам соответствуют 0-1 — всасывание топливной смеси (1-й такт) 1-2 — сжатие смеси (2-й такт) 2-5 — сгорание + 3- — расширение продуктов сгорания + 4-5 — выхлоп (3-й такт) 5-  [c.178]

Д в и г а т е ли со смешанным с гУр а нием топлива (б е с к о м-прессорные дизели). В цилиндре этого двигателя тоже сжимается чистый воздух, а жидкое топливо, сжатое насосом до давлений около 30— 40 МПа, подается в форсунку, через которую оно в мелкораспыленном виде разбрызгивается в цилиндр в конце такта сжатия.  [c.179]

Шестизвенный V-образиый рычажный крнвошипно-ползунный механизм двигателя внутреннего сгорания автобуса преобразует возвратно-поступательное движение ползунов (поршней) 3 и 5 во вращательное движение кривошипа I (рис. 6.3, й). Передача движения от поршней к кривошипу осуществляется через шатуны 2 и 4. В начале такта расширения (рис. 6.3, в) взорвавшаяся в цилиндре рабочая смесь перемещает поршень из в.м.т в н.м.т. В конце такта расширения открываются выпускные клапаны и продувочные окна п продукты горения удаляются из цилиндра в выхлопную систему. Продувка цилиндров начинается после поворота кривошипа от н.м.т на 60 (рис. 6.3, г). После продувки цилшщра начинается второй такт — сжатие воздуха, который заканчивается взрывом впрыснутого в цилиндр топлива (рис. 6.3, в).  [c.205]

Цикл движения поршня включает такты расширения (рис. 6.4, в), когда взорвавшаяся в цилиндре рабочая смесь перемещает поршень из в.м.т в п.м.т (в конце такта открываются выпускные клапаны и продувочные окна цилиндра и продукты горения удаляются в выпускную систему), и такт сжатия, заканчивающийся взрывом впрыснутого в цилиндр топлива (рис. 6,4, в). На кривошнп-пом валу закреплен кулачок плунжерного насоса, при помощи которого осуществляется смазывание всех подвижных соединений двигателя (рис. 6.4, д). Циклограмма машины показана на рис. 6.4, г.  [c.208]

Основным механизмом двигателя внутреннего сгорания является кривошип-но-нолзуниый механизм 1-2-3, который преобразует возвратно-поступательное движение ползуна (поршня) 3 во вращательное движение кривошипа I. Передача движения от ползуна к кривошипу осуществляется через шатун 2 (рис. 6.5, а). Цикл движения поршней включает такты раси1иреиия, выпуска, впуска и сжатия. Взорвавшаяся в камере сгорания рабочая смесь перемещает поршень из  [c.210]

На рис. 271 в качестве примера показана циклограмма работы автоматической линии для обработки головок цилиндра тракторного двигателя, состоящей из 14 станков. Как видно из циклограммы, лимитирующей является операция на вертикально-фрезерном станке модели А253 такт работы линии равен 3,5 мин.  [c.459]


циклов четырехтактного двигателя

Четырехтактный двигатель работает с 4 основными этапами успешного вращения коленчатого вала: впуском, сжатием, мощностью и ходом выпуска. Каждый цилиндр двигателя имеет четыре отверстия для впуска, выпуска, свечей зажигания и впрыска топлива. Поршень приводится в движение коленчатым валом двигателя, тогда как впускные и выпускные клапаны приводятся в движение распределительным валом. Коленчатый вал и распределительный вал соединены ремнем / цепью ГРМ для обеспечения синхронизации между ними.Различные процессы, составляющие циклы четырехтактного двигателя, объясняются ниже:

Такт впуска: Такт впуска — это место, где впускные клапаны открыты и воздух втягивается в цилиндр. Топливная форсунка распыляет топливо в цилиндр для достижения идеального соотношения воздух-топливо. Движение поршня вниз вызывает засасывание воздуха и топлива в цилиндр.

Ход сжатия: Далее следует цикл сжатия, при котором как впускной, так и выпускной клапаны закрыты.Движение поршня вверх вызывает сжатие топливовоздушной смеси вверх по направлению к свече зажигания. Компрессия делает смесь воздух-топливо изменчивой для облегчения зажигания.

Горение / рабочий ход: Во время рабочего хода / рабочего такта впускные и выпускные клапаны все еще закрыты. Свеча зажигания создает искру для воспламенения сжатой топливовоздушной смеси. Возникающая в результате энергия сгорания с силой толкает поршень вниз.

Такт выпуска: Последний цикл — такт выпуска, когда выпускные клапаны открываются и выхлопные газы вытесняются возвращающимся поршнем.

Покупайте качественные автозапчасти в Buy Auto Parts!

Если вы хотите купить оригинальные автозапчасти, покупка автозапчастей — правильное место. Мы предоставим вам запчасть, как только вы выберете год, марку и модель вашего автомобиля. Благодаря лучшей в отрасли гарантии по непревзойденным ценам, наши детали проходят тщательную проверку на соответствие отраслевым стандартам или превосходят их. Мы также предлагаем бесплатную доставку для покупок на сумму более 99 долларов. Ваш заказ будет доставлен вам вовремя, так как он будет доставлен с одного из наших складов, расположенных поблизости от вас.Если у вас возникли проблемы с поиском детали, наша группа поддержки всегда готова помочь вам: позвоните нам по телефону 1-888-907-7225 или оставьте нам письмо по адресу [адрес электронной почты защищен]. Вы можете просмотреть нашу обширную линейку тщательно протестированных запасных частей OEM и запчастей для каждой марки и модели.

Цикл четырехтактного двигателя

Большинство двигателей внутреннего сгорания работают по одному из двух принципов работы: двухтактный цикл или четырехтактный цикл. Четырехтактные двигатели являются преобладающим типом в авиации общего назначения и составляют тему этого поста.

Циклы поршневого двигателя

Поршневые двигатели классифицируются по количеству отдельных шагов, которые двигатель выполняет за один полный цикл двигателя. Двухтактные двигатели совершают цикл за один оборот коленчатого вала с двумя движениями; ход поршня вверх и вниз, который включает впуск, сжатие, сгорание и выпуск. Двухтактные двигатели распространены на легких легких и некоторых сверхлегких самолетах меньшего размера, поскольку эти двигатели имеют меньшее количество деталей, что делает их более простыми в эксплуатации и более дешевыми в приобретении и обслуживании.

Четырехтактные двигатели являются наиболее распространенным типом двигателей, используемых в авиастроении общего назначения, и именно этот тип двигателя мы будем изучать далее. Четырехтактному двигателю требуется два оборота коленчатого вала для завершения одного цикла двигателя, при этом поршень перемещается на 180 ° для завершения каждого этапа цикла. Четырехтактный цикл включает в себя этап впуска и сжатия (один оборот коленчатого вала) и этап мощности и выпуска (один оборот коленчатого вала).

Номенклатура циклов

Есть ряд определений, которые следует хорошо понять, прежде чем переходить к деталям четырехтактного цикла.См. Изображение ниже и определения под изображением.

Рисунок 1: Диаметр цилиндра и ход поршня, движущегося в цилиндре

ВМТ (ВМТ) — это относится к положению поршня, когда он находится в верхней части своего хода. Поршень расположен рядом с верхней частью головки блока цилиндров, а шатунная шейка находится в крайнем верхнем положении.

Нижняя мертвая точка (НМТ) — это точка цикла, в которой поршень находится в нижней точке своего хода, а шатунная шейка находится в самом нижнем положении.

Ход — ход двигателя — это возвратно-поступательное движение, на которое поршень перемещается в цилиндре от НМТ до ВМТ.

Диаметр цилиндра — это внутренний диаметр цилиндра.

Степень сжатия — объем пространства в цилиндре можно определить с поршнем в НМТ и ВМТ. Соотношение между ними дает степень сжатия. Например, двигатель со степенью сжатия, равной 9, имеет объем в цилиндре в девять раз больше при поршне в НМТ, чем в ВМТ.2} {4} \ times Ход
$$
Где:
\ (D: \) Диаметр цилиндра
\ (S.V .: \) Рабочий объем

Четырехтактный цикл

Пока двигатель работает, он будет продолжать непрерывно повторять четыре шага в четырехтактном цикле. Каждый этап цикла представляет собой поворот поршня на 180 °, что соответствует половине оборота коленчатого вала. Поскольку для завершения одного четырехтактного цикла требуется два оборота коленчатого вала, полный цикл будет завершен при половине оборотов двигателя e.Двигатель g, работающий на 3000 об / мин, выполнит 1500 полных циклов за одну минуту.

Двигатель всегда завершает цикл в одном и том же порядке:

Рисунок 2: Элементы четырехтактного цикла

Впуск или индукция

Целью такта впуска или впуска является втягивание смеси воздуха и топлива в цилиндр. Этот ход происходит при перемещении поршня из ВМТ в НМТ. Впускной клапан должен быть открыт, чтобы топливовоздушная смесь попала в цилиндр, в то время как выпускной клапан остается закрытым.Движение поршня вниз вызывает падение давления в цилиндре, в результате чего смесь засасывается в полость, оставленную движением поршня.

Рисунок 3: Такт впуска или впуска

Сжатие

Как следует из названия, такт сжатия предназначен для сжатия топливовоздушной смеси, которая всасывается в головку блока цилиндров перед воспламенением. Это достигается за счет движения поршня вверх от НМТ к ВМТ. Движение поршня уменьшает объем, занимаемый смесью, вызывая повышение давления и температуры внутри цилиндра.Впускной и выпускной клапаны остаются закрытыми на протяжении большей части хода (впускной клапан остается открытым примерно на 50 ° после НМТ, чтобы обеспечить поступление оптимального количества смеси в цилиндр). Когда поршень приближается к ВМТ, свеча зажигания загорается, воспламеняя смесь. Искра рассчитана таким образом, что инерция движущегося вверх поршня не замедляется зажиганием, а продолжается до ВМТ, где ход заканчивается.

Рисунок 4: Такт сжатия

Мощность

Быстро расширяющийся газ, воспламеняемый свечой зажигания, вызывает скачок давления внутри цилиндра, заставляя поршень вернуться из ВМТ в НМТ.По мере того, как поршень движется вниз, увеличивающийся объем вызывает снижение давления и температуры в цилиндре. Именно этот рабочий ход заставляет коленчатый вал вращаться, что в конечном итоге приводит в движение гребной винт и создает тягу. Впускной и выпускной клапаны остаются закрытыми на протяжении большей части рабочего хода, при этом выпускной клапан открывается непосредственно перед тем, как поршень достигает НМТ. Время открытия клапана устанавливается таким образом, чтобы обеспечить выработку максимальной мощности и в то же время обеспечить наиболее эффективное удаление сгоревшего газа во время такта выпуска.

Рисунок 5: Рабочий ход

Выхлоп

Выпускной клапан открывается непосредственно перед завершением рабочего хода и остается открытым во время движения поршня из НМТ в ВМТ. Движение поршня вытесняет выхлопные газы через открытый выпускной клапан, очищая цилиндр до начала такта впуска. На этом цикл завершается, и поршень снова начинает двигаться вниз по мере повторения шага индукции.

Рисунок 6: Такт выпуска

, полный четырехтактный цикл

Полный цикл показан на изображении ниже.

Рисунок 7: Полный четырехтактный цикл

Работа клапана

Одно из фундаментальных свойств всей материи — то, что она обладает массой и, следовательно, инерцией. Это означает, что, как и твердое тело, топливно-воздушная смесь подчиняется законам Ньютона и требует силы для преодоления ее инерции и ускорения в цилиндре. Эта сила возникает из-за падения давления в цилиндре при движении поршня вниз, но движение газа не происходит мгновенно. Следовательно, открытие впускного и выпускного клапанов в ВМТ и НМТ соответственно не приведет к максимальной мощности, вырабатываемой двигателем из-за инерции газа.В результате впускной и выпускной клапаны открываются и закрываются не в ВМТ или НМТ, а скорее по обе стороны от этих положений, чтобы обеспечить оптимальную производительность. Важно помнить, что при нормальной работе двигателя поршни двигаются с очень высокими оборотами, что очень затрудняет отслеживание газом движения поршня.

Вывод клапана — клапан открывается преждевременно (до ВМТ или НМТ) для оптимальной работы двигателя.

Задержка клапана — закрытие клапана задерживается (после ВМТ или НМТ) для улучшения характеристик двигателя.

Вывод клапана Задержка клапана
Впускной клапан Впускной клапан открывается до достижения ВМТ во время такта выпуска, чтобы подготовить цилиндр к приему смеси топлива и воздуха в начале такта впуска. Впускной клапан не закрывается при достижении НМТ во время такта впуска, а скорее задерживается до тех пор, пока поршень не пройдет мимо НМТ и не начнет такт сжатия.
Выпускной клапан Выпускной клапан открывается в конце рабочего хода непосредственно перед достижением НМТ.Это позволяет наиболее эффективно отводить газ во время такта выпуска. Выпускной клапан немного закрывается после ВМТ сразу после начала такта впуска. Это помогает удалить весь выхлопной газ, поскольку свежая смесь, поступающая в цилиндр, вытесняет последний оставшийся газ.

Опережение клапана и запаздывание приводят к периоду около ВМТ и НМТ, когда впускной и выпускной клапаны открыты одновременно. Этот период определяется как перекрытие клапана .На изображении ниже представлено графическое представление цикла четырехтактного двигателя, где периоды перекрытия клапанов можно увидеть по перекрытию двух цветных дуг.

Рисунок 8: Области перекрытия клапанов в цикле четырехтактного двигателя

Цикл Отто

Четырехтактный цикл, описанный выше, приводит к изменениям давления и объема газа внутри цилиндра, когда поршень перемещается вверх и вниз во время различных ходов цикла. Термодинамическое представление этого цикла упоминается как цикл Отто, названный в честь немецкого инженера Николауса Отто ; первый человек, построивший рабочий четырехтактный двигатель в 1860-х годах.

Цикл Отто может быть представлен на графике с объемом по оси x и давлением по оси y, и описывает четырехтактный цикл следующим образом:

Рисунок 9: Цикл Отто

Процесс 0–1: газообразная топливно-воздушная смесь (заряд) фиксированной массы втягивается в цилиндр при постоянном давлении (ход впуска).

Процесс 1–2: заряд сжимается адиабатически (предполагается отсутствие потерь тепла в окружающую среду), когда поршень перемещается из НМТ в ВМТ (ход сжатия).

Процесс 2–3: Заряд воспламеняется свечой зажигания, что приводит к быстрому увеличению давления в цилиндре. Это происходит при постоянном объеме и представляет собой момент, когда поршень находится в ВМТ перед движением вниз для завершения рабочего хода.

Процесс 3–4: Воспламеняющийся заряд заставляет поршень двигаться вниз, что приводит к адиабатическому (изэнтропическому) расширению газа (рабочий ход).

Процесс 4–1: Вся энергия (тепло), выделяемая при сгорании заряда, была преобразована в движение цилиндра вниз, и тепло рассеивается в процессе постоянного объема, пока поршень находится в НМТ.

Процесс 1–0: Масса воздуха и любого остаточного топлива, которое остается после сгорания, выбрасывается в атмосферу через открытый выпускной клапан в процессе постоянного давления (такт выпуска).

Нумерация цилиндров и порядок зажигания

Важно понимать, что не все цилиндры в любом двигателе одновременно выполняют одну и ту же часть цикла; скорее, каждый из них срабатывает в определенной последовательности, предназначенной для обеспечения плавной работы двигателя и передачи постоянной мощности на винт.Производители авиационных двигателей всегда маркируют каждый цилиндр двигателя и публикуют порядок запуска двигателя.

Порядок зажигания разработан для максимального уравновешивания двигателя за счет обеспечения (в случае горизонтально расположенного двигателя) того, что противоположные поршни движутся в одном направлении. В четырехтактном четырехцилиндровом двигателе каждый цилиндр должен одновременно совершать один из четырех тактов.

Предварительное зажигание и детонация

Предварительное зажигание и детонация — это два отдельных, но схожих явления, которые приводят к преждевременному воспламенению топливно-воздушного заряда, вызывая повреждение поршней и потерю мощности.

Предварительное зажигание: относится к воспламенению топливно-воздушной смеси перед воспламенением свечи зажигания и вызывается любым источником в цилиндре, достаточно горячим, чтобы вызвать воспламенение. Распространенными причинами преждевременного зажигания являются горячие точки в камере сгорания, горячий выпускной клапан, перегретая свеча зажигания или раскаленные частицы углерода, отложившиеся в цилиндре. Предварительное зажигание обычно происходит в одном цилиндре (самом горячем цилиндре), тогда как детонация происходит во всех цилиндрах одновременно.

Детонация (детонация): во время такта сжатия топливно-воздушный заряд подвергается быстро возрастающему давлению и температуре по мере уменьшения объема. Чем выше степень сжатия двигателя, тем горячее становится заряд. При очень высоких степенях сжатия может возникнуть ситуация, когда заряд мгновенно воспламенится (взорвется) до назначенного момента возгорания. Это называется детонацией и вызывает удар, подобный молотку, по поршню вместо контролируемого плавного толчка во время рабочего хода.При использовании топлива с неправильным октановым числом может возникнуть детонация. Топливо с более высоким октановым числом способно выдерживать большее сжатие перед воспламенением; поэтому крайне важно использовать топливо с правильным октановым числом для конкретного двигателя. Если топливо с рекомендованным октановым числом недоступно, следует использовать топливо с самым высоким октановым числом. Использование топлива с октановым числом ниже рекомендованного может сделать человека уязвимым для детонации.

Детонация все еще может происходить, даже если используется топливо с правильным октановым числом.Следующие элементы также могут вызвать детонацию, если не устранить их во время полета:

  • Полет с более высоким давлением в коллекторе, чем рекомендовано — это приведет к повышению температуры и давления в головке блока цилиндров за пределы нормальных рабочих пределов.
  • Полеты на слишком бедной смеси — более бедная смесь увеличивает температуру головки блока цилиндров. Детонация может произойти при добавлении мощности, но без предварительного обогащения смеси.
  • Допускает повышение температуры головки цилиндров сверх нормальных рабочих пределов из-за отсутствия аэродинамического охлаждения.Авиационные двигатели с воздушным охлаждением могут перегреваться во время набора высоты, если за ними не следить. Может потребоваться уменьшить скорость набора высоты или выполнить ступенчатый набор высоты в случаях, когда температура головки блока цилиндров приближается к своим пределам.

На этом мы подошли к концу нашего обсуждения цикла четырехтактного двигателя внутреннего сгорания. В следующем посте мы перейдем к более практическим аспектам эксплуатации поршневого самолета. Мы начнем с кабины и обсудим инструменты двигателя, общие для большинства легких самолетов, прежде чем перейти к некоторым общим проблемам с двигателями; как их диагностировать и что делать, если вы видите их во время полета.

Вам понравился этот пост? Почему бы не продолжить чтение этой серии статей о поршневых двигателях самолетов и их системах?

Четырехтактный цикл | Только Leading Edge

Принцип четырехтактного двигателя, на котором работают большинство современных автомобильных двигателей, был открыт французским инженером Альфонсом Бо де Рош в 1862 году. Четырехтактный цикл часто называют циклом Отто в честь немецкого Николауса Августа Отто , который разработал двигатель UN по этому принципу в 1876 г.

Ход — это движение поршня из ВМТ (верхней мертвой точки) в НМТ (нижней мертвой точки) или из НМТ в ВМТ. В одном четырехтактном цикле двигателя четыре такта. Это такт впуска, такт сжатия, рабочий ход и такт выпуска.

  • Такт всасывания: Бензин не будет гореть, если он не будет смешан с правильным количеством воздуха. Это очень взрывоопасно, когда 1 часть смешивается примерно с 15 частями воздуха. Незадолго до того, как поршень достигнет ВМТ, впускной клапан начинает открываться.Когда коленчатый вал вращается, он опускает шток и поршень в цилиндре в направлении НМТ. Пустота низкого давления, создаваемая этим действием, заполняется атмосферным давлением воздуха и топливом через открытый впускной клапан. Около 10 000 галлонов воздуха всасывается на каждый галлон топлива, подаваемого топливной системой. По мере того как коленчатый вал продолжает вращаться, поршень начинает подниматься в цилиндре, и впускной клапан закрывается.
  • Ход сжатия: Поршень движется вверх в цилиндре, сжимая топливно-воздушную смесь на меньшую площадь, облегчая ее горение.Такт сжатия начинается с НМТ после завершения такта впуска. Когда поршень движется к ВМТ, оба клапана закрываются, поскольку смесь сжимается примерно до 1/8 объема, который она занимала, когда поршень находился в НМТ.
  • Рабочий ход: Когда поршень приближается к ВМТ на такте сжатия, смесь сжатого воздуха и топлива становится очень взрывоопасной. Когда система зажигания генерирует искру на свече зажигания, топливо воспламеняется. Горит топливно-воздушная смесь.Когда смесь горит, она расширяется, заставляя поршень опускаться в цилиндре, пока не достигнет НМТ. Действие поршня поворачивает коленчатый вал, чтобы привести автомобиль в действие. Рабочий ход иногда называют ходом расширения.
  • Такт выпуска: Когда поршень приближается к НМТ во время рабочего такта, выпускной клапан открывается, позволяя выходить отработанным газам. Поскольку горящие газы все еще расширяются, они вытесняются через открытый выпускной клапан. По мере того как коленчатый вал продолжает вращаться за пределы НМТ, поршень перемещается вверх в цилиндре, помогая выталкивать оставшиеся выхлопные газы через открытый выпускной клапан.Через несколько градусов после прохождения поршнем ВМТ выпускной клапан закрывается. Весь четырехтактный цикл повторяется, начиная снова, когда поршень движется вниз на такте впуска.

Четырехтактный цикл значительно сложнее этого простого объяснения. Когда двигатель работает, время открытия и закрытия клапанов фактически определяет, когда фактически начинается каждый такт. Более подробно газораспределение будет рассмотрено в одной из следующих статей.

Библиография: — https: // www.britannica.com/technology/four-stroke-cycle

— Автомобильные двигатели — Тим Жиль

Анимированные двигатели — четырехтактный

Четырехтактный двигатель

Четырехтактный двигатель был впервые продемонстрирован Николаусом Отто в 1876 ​​ 1 , поэтому он также известен как Otto цикл . Технически правильным термином на самом деле является четырехтактный цикл . Четырехтактный двигатель, пожалуй, самый распространенный тип двигателя в настоящее время.На нем установлены почти все легковые и грузовые автомобили.

Четыре такта цикла — это впуск, сжатие, мощность и выхлоп. Каждый соответствует одному полному ходу поршня; следовательно, полный цикл требует двух оборотов коленчатого вала для полный.

Впуск

Во время такта впуска поршень движется вниз, вытягивая свежий заряд испаренной топливно-воздушной смеси. Изображенный двигатель имеет тарельчатый впускной клапан , который открывается под действием вакуума, создаваемого впускной ход.Некоторые ранние двигатели работали таким образом; однако самые современные двигатели включают дополнительный кулачок / подъемник, как показано на выхлопной клапан. Выпускной клапан удерживается закрытым пружиной (не показано здесь).

Сжатие

Когда поршень поднимается, тарельчатый клапан принудительно закрывается из-за повышенного давления. давление в баллоне. Импульс маховика движет поршень вверх, сжатие топливно-воздушной смеси.

Мощность

В верхней части такта сжатия свеча зажигания загорается, воспламеняя сжатое топливо.Когда топливо сгорает, оно расширяется, приводя в движение поршень. вниз.

Выхлоп

В нижней части рабочего хода выпускной клапан открывается механизмом кулачка / подъемника. Восходящий ход поршень вытесняет отработанное топливо из цилиндра.


Система зажигания

На этой анимации также показана простая система зажигания с выключателем. точки, катушка, конденсатор и аккумулятор.

Несколько посетителей написали, чтобы указать на проблему с точки прерывания на моей иллюстрации.В этой схеме зажигания свеча зажигания загорится, как только откроются точки прерывателя . Иллюстрация похоже, это наоборот.

На самом деле, иллюстрация верна; он просто движется так быстро, что это трудно увидеть! Вот кадры в точке, где розетки:

Моим первоначальным намерением было точно показать, что точки должны оставаться закрывается всего на долю секунды, называется задержкой . Автор иллюстрируя это, я нечаянно скрыл общую работу схема.Возможно, когда-нибудь я подготовлю более подробную иллюстрацию только система зажигания.

Более крупные четырехтактные двигатели обычно включают более одного цилиндра, имеют различные приспособления для распределительного вала (сдвоенные, верхние и т. д.), иногда с системой впрыска топлива, турбокомпрессорами, несколькими клапанами и т. д. эти усовершенствования изменяют базовую работу двигателя.

Четырехтактный двигатель | Автопедия | Fandom

Четырехтактный цикл, используемый в бензиновых двигателях. Правая синяя сторона — это впуск, а левая желтая сторона — выхлоп.Стенка цилиндра представляет собой тонкую гильзу, окруженную охлаждающей водой.

Сегодня в двигателях внутреннего сгорания автомобилей, грузовиков, мотоциклов, самолетов, строительной техники и многих других чаще всего используется четырехтактный цикл . Четыре хода относятся к тактам впуска, сжатия, сгорания (мощность) и выпуска, которые происходят во время двух оборотов коленчатого вала за рабочий цикл бензинового двигателя и дизельного двигателя. Менее техническое описание четырехтактного цикла звучит так: «Всасывай, Сжимай, Взрывай, Удар».

Цикл начинается в верхней мертвой точке (ВМТ), когда поршень находится дальше всего от оси коленчатого вала.Под ходом понимается полный ход поршня от верхней мертвой точки (ВМТ) до нижней мертвой точки (НМТ).

Ход 1 из 4 «Всасывание»: На впуске или всасывании ход поршня, поршень опускается от верхней части цилиндра к нижней части цилиндра, уменьшая давление внутри цилиндра. Смесь топлива и воздуха нагнетается атмосферным (или большим) давлением в цилиндр через впускной канал. Затем впускной клапан (ы) закрывается.

Ход 2 из 4 «Сжатие»: При закрытых впускных и выпускных клапанах поршень возвращается в верхнюю часть цилиндра, сжимая топливно-воздушную смесь. Это известно как ход сжатия , ход .

Ход 3 из 4 «Взрыв»: Когда поршень находится в верхней мертвой точке или близко к ней, смесь сжатого воздуха и топлива воспламеняется, обычно от свечи зажигания (для бензиновых двигателей или двигателей с циклом Отто) или от тепло и давление сжатия (для дизельного двигателя или двигателя с воспламенением от сжатия).Возникающее в результате сгорания сжатой топливно-воздушной смеси огромное давление с огромной силой толкает поршень обратно в нижнюю мертвую точку. Это известно как ход мощностью , который является основным источником крутящего момента и мощности двигателя.

Ход 4 из 4 «Удар»: Во время хода на выпуске поршень снова возвращается в верхнюю мертвую точку при открытом выпускном клапане. Это действие удаляет продукты сгорания из цилиндра, проталкивая отработанную топливно-воздушную смесь через выпускной клапан (ы).

Расширение и отвод тепла при постоянном объеме.

Основная статья: Октановое число

Мощность двигателя внутреннего сгорания в основном возникает из-за расширения газов в рабочем такте. Сжатие топлива и воздуха в очень маленькое пространство увеличивает эффективность рабочего такта, но увеличение степени сжатия цилиндра также увеличивает нагрев топлива при сжатии смеси (согласно закону Чарльза).

Легковоспламеняющееся топливо с низкой температурой самовоспламенения может загореться до того, как цилиндр достигнет верхней мертвой точки (ВМТ), что может привести к обратному вращению поршня.В качестве альтернативы топливо, которое самовоспламеняется в ВМТ, но до того, как цилиндр начал движение вниз, может повредить поршень и цилиндр из-за чрезмерной тепловой энергии, сконцентрированной в очень маленьком пространстве без какого-либо облегчения. Это повреждение часто называют детонацией двигателя, и при частом возникновении оно может привести к необратимому повреждению двигателя.

Октановое число является мерой устойчивости топлива к самовоспламенению за счет повышения температуры, при которой оно будет самовоспламеняться. Топливо с более высоким октановым числом обеспечивает более высокую степень сжатия без риска повреждения из-за самовоспламенения.

Дизельные двигатели работают от самовоспламенения. Они решают проблему повреждения двигателя, раздельно впрыскивая топливо под высоким давлением в цилиндр незадолго до того, как поршень достиг ВМТ. Воздух без топлива можно сжимать до очень высокой степени, не беспокоясь о самовоспламенении, а топливо под высоким давлением в системе впрыска топлива не может воспламениться без присутствия воздуха.

Предел выходной мощности

Четырехтактный цикл
1 = ВМТ
2 = НМТ
c: Впуск
a: Компрессия
d: Мощность
D: Выпуск

Максимальное количество мощности, вырабатываемой двигателем, составляет определяется максимальным количеством всасываемого воздуха.Количество мощности, вырабатываемой поршневым двигателем, зависит от его размера (объема цилиндра), двухтактной или четырехтактной конструкции, объемного КПД, потерь, соотношения воздух-топливо, теплотворной способности топлива. , содержание кислорода в воздухе и скорость (об / мин). Скорость в конечном итоге ограничена прочностью материала и смазкой. Клапаны, поршни и шатуны испытывают сильные ускоряющие силы. При высоких оборотах двигателя может произойти физическая поломка и дрожание поршневых колец, что приведет к потере мощности или даже к разрушению двигателя.Флаттер поршневого кольца возникает, когда кольца колеблются вертикально внутри поршневых канавок, в которых они находятся. Флаттер кольца нарушает уплотнение между кольцом и стенкой цилиндра, что приводит к потере давления и мощности в цилиндре. Если двигатель вращается слишком быстро, пружины клапанов не могут действовать достаточно быстро, чтобы закрыть клапаны. Это обычно называют «смещением клапана», и это может привести к контакту поршня с клапаном, серьезно повредив двигатель. На высоких скоростях смазка поверхности раздела стенок поршневого цилиндра имеет тенденцию к разрушению.Это ограничивает скорость поршня промышленных двигателей примерно до 10 м / сек.

Поток через впускное / выпускное отверстие

Выходная мощность двигателя зависит от способности впуска (воздушно-топливной смеси) и выхлопных газов быстро перемещаться через отверстия клапана, обычно расположенные в головке блока цилиндров. Для увеличения выходной мощности двигателя неровности впускного и выпускного трактов, такие как дефекты литья, могут быть устранены, а с помощью стенда для измерения расхода воздуха радиусы поворотов порта клапана и конфигурация седла клапана могут быть изменены для уменьшения сопротивление.Этот процесс называется портированием, и его можно выполнить вручную или с помощью станка с ЧПУ.

Нагнетатель

Одним из способов увеличения мощности двигателя является нагнетание большего количества воздуха в цилиндр, чтобы можно было производить больше мощности за каждый рабочий ход. Первоначально это было сделано с использованием типа устройства сжатия воздуха, известного как нагнетатель, который приводится в действие коленчатым валом двигателя.

Нагнетание увеличивает пределы выходной мощности четырехтактного двигателя, но нагнетатель всегда работает.Непрерывное сжатие всасываемого воздуха требует некоторой механической энергии для достижения, поэтому нагнетатель имеет стоимость пониженной топливной эффективности, когда двигатель работает на низких уровнях мощности или когда двигатель просто разгружен и работает на холостом ходу.

Турбонаддув

Турбокомпрессор был разработан как частичный метод сжатия большего количества воздуха в головке блока цилиндров. Он состоит из двухэлементной высокоскоростной турбины в сборе, одна сторона которой сжимает всасываемый воздух, а другая сторона приводится в действие за счет выхода выхлопных газов.

На холостом ходу и на низких или средних оборотах турбокомпрессор не включается, и двигатель работает без наддува. Когда требуется гораздо большая выходная мощность, частота вращения двигателя увеличивается до тех пор, пока выхлопные газы не станут достаточными для «раскрутки» турбины турбонагнетателя, чтобы начать сжимать во впускной коллектор гораздо больше воздуха, чем обычно.

Турбонаддув обеспечивает более эффективную работу двигателя на низких и средних оборотах, но существует конструктивное ограничение, известное как турбо-задержка.Увеличенная мощность двигателя доступна не сразу из-за необходимости резко увеличить обороты двигателя для раскрутки турбонагнетателя, прежде чем турбо начнет производить полезное сжатие воздуха.

Передаточное отношение штока и поршня к ходу поршня

Отношение штока к ходу — это отношение длины шатуна к длине хода поршня. Более длинный шток снижает боковое давление поршня на стенку цилиндра и силы напряжения, тем самым увеличивая срок службы двигателя. Это также увеличивает стоимость, высоту и вес двигателя.

«Прямоугольный двигатель» — это двигатель, диаметр цилиндра которого равен длине его хода. Двигатель, у которого диаметр отверстия больше, чем длина его хода, является двигателем с квадратным сечением, и наоборот, двигатель с диаметром отверстия, который меньше его длины хода, является двигателем с квадратом.

Передаточное отношение штока и поршня к ходу поршня

Отношение штока к ходу — это отношение длины шатуна к длине хода поршня. Более длинный шток снижает боковое давление поршня на стенку цилиндра и силы напряжения, тем самым увеличивая срок службы двигателя.Это также увеличивает стоимость, высоту и вес двигателя.

«Прямоугольный двигатель» — это двигатель, диаметр цилиндра которого равен длине его хода. Двигатель, у которого диаметр отверстия больше, чем длина его хода, является двигателем с квадратным сечением, и наоборот, двигатель с диаметром отверстия, который меньше его длины хода, является двигателем с квадратом.

Энергетический баланс

Двигатели

Otto имеют КПД около 35% — другими словами, 35% энергии, генерируемой при сгорании, преобразуется в полезную энергию вращения на выходном валу двигателя, а остальная часть выделяется в виде отработанного тепла.Напротив, шестицилиндровый двигатель может преобразовывать более 50% энергии сгорания в полезную энергию вращения.

Современные двигатели часто намеренно конструируют так, чтобы они были немного менее эффективными, чем они могли бы быть в противном случае. Это необходимо для контроля выбросов, таких как рециркуляция выхлопных газов и каталитические нейтрализаторы, уменьшающие смог и другие атмосферные загрязнители. Снижению эффективности можно противодействовать с помощью блока управления двигателем, использующего методы сжигания обедненной смеси. [1]

См. Также

Список литературы

  • Харденберг, Хорст О., Средние века двигателя внутреннего сгорания , Общество автомобильных инженеров (SAE), 1999
  • scienceworld.wolfram.com/physics/OttoCycle.html

Внешние ссылки

  1. ↑ Загрязнение воздуха от автомобилей Асиф Фаиз, Кристофер С. Уивер, Майкл П. Уолш

Что такое четырехтактный двигатель?

Простейшее объяснение двигателя внутреннего сгорания

По эксперту по продукту | Размещено в Без рубрики в четверг, 26 января 2017 г., в 19:07

Что такое четырехтактный двигатель?

На протяжении всей истории было много попыток пассажирских перевозок, но ни одна из них не была столь успешной, как четырехтактный двигатель внутреннего сгорания.Электромобиль может быть будущим, но двигатель внутреннего сгорания — это наше прошлое. Мало того, что важно понимать, как ваша машина заставляет вас работать каждый день, это также наводит на размышления и просто потрясающе.

Время передачи
Если вы являетесь автомобильным энтузиастом, вы, возможно, слышали поговорку «сосать, бить, дуть». Знаете ли вы, что это не просто уничижительный эвфемизм? Каждый цилиндр в любом четырехтактном двигателе внутреннего сгорания снова и снова проходит четыре ступени для выработки мощности.В профессиональном плане это называется впуском, сжатием, сгоранием и выпуском.

Впуск

Сначала двигатель всасывает воздух и топливо. При этом поршень отодвигается от свечи зажигания и отскакивает от другой стороны цилиндра.

Сжатие

На обратном пути к свече зажигания воздух и газ, всасываемые в цилиндр, сжимаются, создавая давление в ожидании химической реакции при воспламенении свечи зажигания.

Горение

Когда поршень ударяется о верхнюю часть цилиндра, свеча зажигания воспламеняется, создавая взрыв, который снесет вам голову, если вы не будете защищены блоком цилиндров.

Выхлоп

Взрыв на стадии сгорания толкает поршень обратно в цилиндр, одновременно начиная стадию впуска для следующего раунда.

Конечно, если это вас заинтересует, это только вызовет дополнительные вопросы. Не стесняйтесь спрашивать их в разделе комментариев ниже!

  • Facebook
  • Твиттер
  • Pinterest

Эта запись была опубликована в четверг, 26 января 2017 г., в 19:07 и находится в рубрике Без категории.Вы можете следить за любыми ответами на эту запись через канал RSS 2.0. И комментарии и запросы в настоящий момент закрыты.

Исследование энергетического баланса и потерь мощности четырехтактного двигателя внутреннего сгорания объемом 120 куб. См | J. Eng. Gas Turbines Power

В исследовательской лаборатории ВВС (AFRL) уже несколько лет ведутся работы по увеличению дальности полета и выносливости беспилотных летательных аппаратов с двигателями внутреннего сгорания (ДВС) группы 2 (10–25 кг).Для достижения желаемых улучшений производительности большой интерес представляют исследования по повышению общей эффективности силовых установок ДВС. Высокая удельная энергия углеводородного топлива (13000 Вт · ч / кг для бензина), но низкая эффективность преобразования топлива для небольших ДВС означает, что относительно небольшие улучшения в эффективности преобразования топлива в двигателях могут привести к значительному увеличению дальности полета и долговечности. Однако имеется мало информации об эффективности ДВС в интересующем диапазоне размеров (10–200 см 3 рабочий объем) для БЛА группы 2.Большинство имеющихся в настоящее время данных об эффективности для ДВС 10–200 см 3 относится к двухтактным двигателям. Цель этого исследования состояла в том, чтобы провести углубленное исследование эффективности и потерь энергии четырехтактного двигателя малого рабочего объема, который потенциально мог бы использоваться для питания БПЛА группы 2. Энергетический баланс был выполнен на четырехтактном двигателе Honda GX120 с использованием эмпирических методов исследования. Двигатель имел объем 118 см 3 , одноцилиндровый ДВС. Энергетические пути были охарактеризованы как процент от общей химической энергии, доступной в топливе.Энергетические пути были разделены на четыре категории: тормозная мощность, охлаждающая нагрузка, ощутимая энтальпия выхлопных газов и неполное сгорание. В исследовании изучалось влияние пяти рабочих параметров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *