ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Каким бывает впрыск топлива

Одноточечный..

ВПРЫСК, который также иногда называют центральным, стал широко применяться на легковых автомобилях в 80-х годах прошлого века. Подобная система питания получила свое название из-за того, что топливо подавалось во впускной коллектор лишь в одной точке.

Многие системы того времени были чисто механическими, электронного управления у них не было. Частенько основой для такой системы питания был обычный карбюратор, из которого просто удаляли все “лишние” элементы и устанавливали в районе его диффузора одну или две форсунки (поэтому центральный впрыск стоил относительно недорого). К примеру, так была устроена система TBI (“Throttle Body Injection”) компании “General Motors”.

Но, несмотря на свою кажущуюся простоту, центральный впрыск обладает очень важным преимуществом по сравнению с карбюратором – он точнее дозирует горючую смесь на всех режимах работы двигателя. Это позволяет избежать провалов в работе мотора, а также увеличивает его мощность и экономичность.

Со временем появление электронных блоков управления позволило сделать центральный впрыск компактнее и надежнее. Его стало легче адаптировать к работе на различных двигателях.

Однако от карбюраторов одноточечный впрыск унаследовал и целый ряд недостатков. К примеру, высокое сопротивление поступающему во впускной коллектор воздуху и плохое распределение топливной смеси по отдельным цилиндрам. Как результат – двигатель с такой системой питания обладает не очень высокими показателями. Поэтому сегодня центральный впрыск практически не встречается.

Кстати, концерн “General Motors” также разработал интересную разновидность центрального впрыска – CPI (“Central Port Injection”). В такой системе одна форсунка распыляла топливо в специальные трубки, которые были выведены во впускной коллектор каждого цилиндра. Это был своего рода прообраз распределенного впрыска. Однако из-за невысокой надежности от использования CPI быстро отказались.

Распределенный

ИЛИ МНОГОТОЧЕЧНЫЙ впрыск топлива – сегодня самая распро¬страненная система питания двигателей на современных автомобилях. От предыдуще¬го типа она отличается прежде всего тем, что во впускном коллекторе каждого цилиндра стоит индивидуальная форсунка. В определенные моменты времени она впрыскивает необходимую порцию бензина прямо на впускные клапаны “своего” цилиндра.

Многоточечный впрыск бывает параллельным и последовательным. В первом случае в определенный момент времени срабатывают все форсунки, топливо перемешивается с воздухом, и получившаяся смесь ждет открытия впускных клапанов, чтобы попасть в цилиндр. Во втором случае период работы каждого инжектора рассчитывается индивидуально, чтобы бензин подавался за строго определенное время перед открытием клапана. Эффективность такого впрыска выше, поэтому большее распространение получили именно последовательные системы, несмотря на более сложную и дорогую электронную “начинку”. Хотя иногда встречаются и более дешевые комбинированные схемы (форсунки в этом случае срабатывают попарно).

Поначалу системы распределенного впрыска тоже управлялись механически. Но со временем электроника и здесь одержала верх. Ведь, получая и обрабатывая сигналы от множества датчиков, блок управления не только командует исполнительными механизмами, но и может сигнализировать водителю о неисправности. Причем даже в случае поломки электроника переходит на аварийный режим работы, позволяя автомобилю самостоятельно добраться до сервисной станции.

Распределенный впрыск обладает целым рядом достоинств. Помимо приготовления горючей смеси правильного состава для каждого режима работы двигателя такая система вдобавок точнее распределяет ее по цилиндрам и создает минимальное сопротивление проходящему по впускному коллектору воздуху. Это позволяет улучшить многие показатели мотора: мощность, экономичность, экологичность и т.д. Из недостатков многоточечного впрыска можно назвать, пожалуй, лишь только довольно высокую стоимость.

Непосредственный..

“Goliath GP700” стал первым серийным автомобилем, двигатель которого получил впрыск топлива.

ВПРЫСК (его еще иногда называют прямым) отличается от предыдущих типов систем питания тем, что в данном случае форсунки подают топливо прямо в цилиндры (минуя впус¬кной коллектор), как у дизельного двигателя.

В принципе такая схема системы питания не нова. Еще в первой половине прошлого века ее использовали на авиационных двигателях (например на советском истребителе “Ла-7”). На легковых машинах прямой впрыск появился чуть позже – в 50-х годах ХХ века сначала на автомобиле “Goliath GP700”, а затем на знаменитом “Mercedes-Benz 300SL”. Однако через некоторое время автопроизводители практически отказались от применения непосредственного впрыска, он остался лишь на гоночных автомобилях.

Дело в том, что головка блока цилиндров у двигателя с прямым впрыском получалась очень сложной и дорогой в производстве. Кроме того, конструкторам долгое время не удавалось добиться стабильной работы системы. Ведь для эффективного смесеобразования при прямом впрыске необходимо, чтобы топливо хорошо распылялось. То есть подавалось в цилиндры под большим давлением. А для этого требовались специальные насосы, способные его обеспечить.. В итоге на первых порах двигатели с такой системой питания получались дорогими и неэкономичными.

Однако с развитием технологий все эти проблемы удалось решить, и многие автопроизводители вернулись к давно забытой схеме. Первой была компания “Mitsubishi”, в 1996 году установившая двигатель с непосредственным впрыском топлива (фирменное обозначение – GDI) на модель “Galant”, затем подобные решения стали использовать и другие компании. В частности, “Volkswagen” и “Audi” (система FSI), “Peugeot-Citroёn” (HPA), “Alfa Romeo” (JTS) и другие.

Почему же такая система питания вдруг заинтересовала ведущих автопроизводителей? Все очень просто – моторы с прямым впрыском способны работать на очень бедной рабочей смеси (с малым количеством топлива и большим – воздуха), поэтому они отличаются хорошей экономичностью. Вдобавок подача бензина непосредственно в цилиндры позволяет поднять степень сжатия двигателя, а следовательно и его мощность.

Система питания с прямым впрыском может работать в разных режимах. Например, при равномерном движении автомобиля со скоростью 90-120 км/ч электроника подает в цилиндры очень мало топлива. В принципе такую сверхбедную рабочую смесь очень трудно поджечь. Поэтому в моторах с прямым впрыском используются поршни со специальной выемкой. Она направляет основную часть топлива ближе к свече зажигания, где условия для воспламенения смеси лучше.

При движении с высокой скоростью или при резких ускорениях в цилиндры подается значительно больше топлива. Соответственно из-за сильного нагрева частей двигателя возрастает риск возникновения детонации. Чтобы избежать этого, форсунка впрыскивает в цилиндр топливо широким факелом, ко¬торый заполняет весь объем камеры сгорания и охлаждает ее.

Если же водителю требуется резкое ускорение, то форсунка срабатывает два раза. Сначала в начале такта впуска распыляется небольшое количество топлива для охлаждения цилиндра, а затем в конце такта сжатия впрыскивается основной заряд бензина.

Но, несмотря на все свои преимущества, двигатели с непосредственным впрыском пока еще недостаточно распространены. Причина – высокая стоимость и требовательность к качеству топлива. Кроме того, мотор с такой системой питания работает громче обычного и сильнее вибрирует, поэтому конструкторам приходится дополнительно усиливать некоторые детали двигателя и улучшать шумоизоляцию моторного отсека.

Автор
Юрий УРЮКОВ
Издание
Клаксон №4 2008 год
Фото
фото из архива “Клаксона”

Распределенный впрыск топлива или непосредственный что лучше?

Дорогие друзья, сегодня узнаем много интересного о впрыске системы питания. И так: распределенный впрыск топлива или непосредственный? Что лучше и чем они отличаются?

Допустим у вас пришло время осуществить вашу мечту и вы серьезно взялись за выбор автомобиля. Дело серьёзное, и если выбор цвета и формы машины даётся довольно легко, то с подбором типа мотора могут возникнуть трудности, особенно у неподготовленных в техническом плане людей.

Если так, тогда вам однозначно следует внимательно прочитать эту статью.

Распределенный впрыск топлива: экономно и экологично

Не секрет, что распределённый впрыск топлива (инжекция)  – это современная технология, тесно связанная со сложной электроникой. Главной её «фишкой» является наличие индивидуальной форсунки у каждого цилиндра бензинового мотора.

Но, на самом деле, похожие системы, правда, имеющие механическое управление, появились ещё в конце ХIХ – начале ХХ веков. Использовались они в авиации, в гоночных машинах и иногда их интерпретации даже выходили на массовый автомобильный рынок.

Настоящий же бум распределенный впрыск пережил с появлением доступных микропроцессоров в конце 80-х годов и пользуется уважением у производителей транспортных средств и по сей день.

Перейдём к принципу работы и разновидностям системы распределенного впрыска (кстати, её ещё называют многоточечной системой).

Как мы уже упомянули, ключевой особенностью данной технологии являются топливные форсунки, которые устанавливаются по одной перед впускными клапанами каждого цилиндра двигателя.

Таким образом, в отличие от моновпрыска, удаётся добиться равномерного распределения топливно-воздушной смеси по цилиндрам, а также точной её дозировки.

В целом данная схема расположения форсунок позволила инженерам значительно повысить экологичность моторов, а также сделать их менее прожорливыми. Контролирует весь этот ансамбль электронный блок управления (ЭБУ).

Он при помощи многочисленных датчиков, передающих данные о температуре, положении педали газа, количестве поступающего воздуха и прочих параметрах, вычисляет оптимальный объём бензина для впрыска и в нужный для этого момент подаёт управляющий сигнал на открытие форсунок.

Момент впрыск топлива

Кстати, о времени открытия форсунок. Тут не всё так просто, и системы распределённого впрыска различаются в зависимости от того, в каком порядке происходит активация этих элементов. Существуют такие варианты впрыска:

  • одновременный;
  • попарно-параллельный;
  • фазированный.

Одновременный

При одновременной инжекции бензина все форсунки открываются единомоментно, и происходит это за один полный рабочий цикл двигателя (два оборота коленчатого вала). Не считаю это разумным ходом и не понимаю зачем лишний расход топлива.

Видимо это практиковалось на заре изобретения такого метода, когда не очень беспокоились об экологии и бензин был дешевый.

Попарно-параллельный

При попарно-параллельном открытии процесс разбивается таким образом, чтобы в один момент времени впрыск производили только две форсунки и только тех цилиндров, которые переходят в такты впуска и выпуска.

Здесь тоже наблюдается лишний впрыск, зачем он нужен в такте выпуска. Говорят это помогает при запуске двигателя в аварийном режиме. Ну хоть единовременно, и то хорошо.

Фазированный

Но самым современным из перечисленной тройки является фазированный алгоритм работы системы  распределенного впрыска топлива и используется в современных автомобилях. Он предусматривает включение каждой форсунки непосредственно перед тактом впуска соответствующего ей цилиндра. Это конечно разумно и правильно.

Главное в таком впрыске то, что форсунка впрыскивает топливную смесь во впускной коллектор на входе в цилиндр, непосредственно на впускной клапан. Впрыск производится на такте ВПУСК.

В погоне за показателями

Выше мы уже говорили о том, что система многоточечной инжекции позволила двигателям стать гораздо более «чистыми» по сравнению с предшественниками, оснащёнными моновпрыском или карбюратором.

Тем не менее, защитникам окружающей среды этого было мало и с каждым годом автопроизводителям приходилось учитывать всё более жёсткие экологические нормы.

Чем же отличается распределенный впрыск топлива от непосредственного?

А вот в чем. Как уже было сказано выше, при распределенном впрыске, смесь поступает в коллектор в область впускного клапана. А при непосредственном впрыске, прямо в камеру сгорания, минуя впускной коллектор.

Непосредственный впрыск

Непосредственный впрыск более точен и подаваемое давление топливной смеси выше, чем у распределенного впрыска. Такой принцип экономичнее (до 20% экономии топлива). экологичнее (топливо лучше сгорает). Но все же такой тип системы не лишен недоствтков и конструкторы пошли дальше.

А вот что из этого вышло, и какие технологии появились в результате, в Комбинированная система впрыска топлива TFSI.

 

 

//www.youtube.com/watch?v=lW7UOR68poQ

 

До встречи на страницах блога!

Главные плюсы и минусы двигателей с непосредственным впрыском топлива

Прямой впрыск топлива – хорошо или плохо?

Двигатели с непосредственным впрыском (также используется термин «прямой впрыск», или GDI) начали появляться на автомобилях не так давно. Однако технология набирает популярность и все чаще встречается на моторах новых автомобилей. Сегодня мы в общих чертах постараемся ответить, что такое технология непосредственного впрыска и стоит ли ее опасаться?

 

Для начала стоит отметить, что главной отличительной особенностью технологии является расположение форсунок, которые размещены непосредственно в головке блока цилиндров, соответственно, и впрыск под огромным давлением происходит напрямую в цилиндры, в отличие от давно зарекомендовавшей себя с лучшей стороны системы впрыска горючего во впускной коллектор.

 

Прямой впрыск впервые был испытан в серийном производстве японским автопроизводителем Mitsubishi. Эксплуатация показала, что среди плюсов главными преимуществами стали экономичность – от 10% до 20%, мощность – плюс 5% и экологичность. Основной минус – форсунки крайне требовательны к качеству топлива.

Стоит также отметить, что схожая система уже долгие десятилетия успешно устанавливается на дизельные двигатели. Однако именно на бензиновых моторах применение технологии было сопряжено с рядом трудностей, которые до сих пор не были окончательно решены.

 

В видео с YouTube-канала «Savagegeese» объясняется, что такое прямой впрыск и что может пойти не так в ходе эксплуатации автомобиля с данной системой. В дополнение к главным плюсам и минусам в видеоролике также объясняются тонкости профилактического обслуживания системы.  Кроме того, в ролике затрагивается тема систем впрыска во впускные каналы, которые можно в изобилии наблюдать на более старых моторах, а также моторы, которые используют оба метода впрыска горючего.

Наглядно используя диаграммы Bosch, ведущий объясняет, как все это работает.

 

Чтоб узнать все нюансы, предлагаем посмотреть видео ниже (включение перевода субтитров поможет разобраться, если вы не очень хорошо знаете английский). Для тех, кому не слишком интересно смотреть, об основных плюсах и минусах непосредственного впрыска бензина можно прочитать ниже, после видео:

 

Итак, экологичность и экономичность – благие цели, но вот чем чревато использование современной технологии в вашем автомобиле:

 

Минусы

 

1. Очень сложная конструкция.

 

2. Отсюда вытекает вторая важная проблема. Поскольку молодая бензиновая технология подразумевает внесение серьезных изменений в конструкцию головок цилиндров двигателя, конструкцию самих форсунок и попутное изменение иных деталей мотора, к примеру ТНВД (топливный насос высокого давления), стоимость автомобилей с непосредственным впрыском топлива выше.

 

3. Производство самих частей системы питания также должно быть крайне точным. Форсунки развивают давление от 50 до 200 атмосфер.

 

Прибавьте к этому работу форсунки в непосредственной близости со сгораемым топливом и давлением внутри цилиндра и получите необходимость производства очень высокопрочных компонентов.

 

4. Поскольку сопла форсунок смотрят в камеру сгорания, все продукты сгорания бензина также осаждаются на них, постепенно забивая или выводя форсунку из строя. Это, пожалуй, самый серьезный минус использования конструкции GDI в российских реалиях.

 

5. Помимо этого необходимо очень тщательно следить за состоянием двигателя. Если в цилиндрах начинает происходить угар масла, продукты его термического распада достаточно быстро выведут из строя форсунку, засорят впускные клапаны, образовав на них несмываемый налет из отложений. Не стоит забывать, что классический впрыск с форсунками, расположенными во впускном коллекторе, хорошо очищает впускные клапаны, омывая их под давлением топливом.

 

6. Дорогой ремонт и необходимость профилактического обслуживания, которое тоже недешевое.

Помимо этого, в видео также объясняется, что при ненадлежащей эксплуатации на автомобилях с прямым впрыском могут наблюдаться загрязнение клапанов и ухудшение производительности, в особенности на турбированных двигателях.

 

Смотрите также: Подробное объяснение принципа работы двигателя с переменным сжатием Infiniti

 

Плюсы

 

1. Экологичность.

 

2. Экономичность (правда, здесь нужно сделать оговорку: реальная экономия бензина доступна в условиях, близких к идеальным) – экономия 5-10%.

 

3. Немного более высокая мощность.

 

4. GDI при непосредственном попадании топлива в цилиндр охлаждает головку поршня.

 

5. Происходит лучшее смешение топливовоздушной смеси в цилиндрах.

 

6. Меньше детонация.

 

7. Требуется гораздо меньше топлива, смесь при определенных условиях работы мотора может обедняться до 30:1

 

8. Процесс работы двигателя точнее контролируется при помощи компьютера.

 

Таким образом, если выполнять определенные правила, предписанные автопроизводителем, а именно заправляться на проверенных заправках качественным топливом и регулярно проводить техническое обслуживание топливной системы автомобиля, то ухудшения качеств мотора, а тем более поломок оборудования можно избежать. Специалисты также советуют проводить прочистку форсунок после каждых 50-60 тыс. км.

Система впрыска


При производстве современных автомобилей используются разные системы впрыска топлива. Система впрыска (также известна, как инжекторная система), отвечает за впрыск топлива.

Необходимо отметить, что система впрыска используется и на бензиновых, и на дизельных моторах. Однако особенности их конструкции и работа имеют значительные различия.

С помощью системы впрыска в бензиновом двигателе создается однородная топливно-воздушная смесь, воспламенение которой происходит в принудительном порядке за счет искры. Если говорить о дизельных силовых агрегатах, то в этом случае подача топлива выполняется под высоким давлением, порция топлива перемешивается со сжатым нагретым воздухом и практически мгновенно воспламеняется. Величина порции определяется давлением впрыска. Отсюда следует, что чем больше давление, тем выше мощность силового агрегата.


Система впрыска является неотъемлемой частью топливной системы машины. А форсунка (инжектор) является основным рабочим устройством любой системы впрыска.

Системы впрыска бензиновых двигателей

В зависимости от метода создания топливно-воздушной смеси, различают несколько видов систем впрыска: центральный, распределенный, непосредственный. Системы распределенного и центрального впрыска относятся к системам предварительного впрыска. Другими словами, впрыск в них выполняется во впускном коллекторе, не достигая до камеры сгорания.

Центральный впрыск (или моновпрыск) осуществляется одной форсункой, которая устанавливается во впускном коллекторе. По сути это карбюратор с форсункой. На сегодняшний день такие системы перестали производить, но и сейчас они встречаются на легковых авто. Данная система имеет определенные преимущества: надежность и простота конструкции. Из недостатков можно назвать низкие экологические показатели и большой расход топлива.

Система распределенного впрыска (т.н. многоточечная система) – наиболее распространенная системой впрыска в бензиновых силовых установках.

Подразумевает подачу топлива на каждый цилиндр посредством отдельной форсунки. Топливно-воздушная смесь создается во впускном коллекторе. Из преимуществ системы выделяют: незначительный уровень вредных выбросов, умеренное потребление топлива, не слишком требовательна к качеству топлива.

Непосредственный впрыск – данная система считается наиболее перспективной. Топливо подается в камеру сгорания каждого цилиндра. Такая система способствует созданию наиболее сбалансированного состава топливно-воздушной смеси на всех режимах работы мотора, повышает степень сжатия, обеспечивая таким образом полное сгорание смеси, повышение мощности двигателя, экономию топлива, снижение вредных выбросов. Наряду с этим, непосредственный впрыск имеет определенные недостатки – система отличается довольно сложной конструкцией и жесткими эксплуатационными требованиями, в частности очень чувствительна к качеству топлива, особенно содержанию в нем серы.

Комбинированная система впрыска объединяет систему распределенного и непосредственного впрыска на одном ДВС. Применяется для снижения вредных выбросов в атмосферу.

На бензиновых силовых агрегатах системы впрыска могут иметь электронное и механическое управление. Наиболее совершенным считается электронное управление, поскольку обеспечивает ощутимую экономию топлива и минимизирует выброс вредных веществ.

Впрыск топлива может производиться импульсивно (дискретно) или непрерывно. Если говорить об экономичности, то перспективным является импульсивный впрыск, и именно поэтому его используют все современные системы.


В силовых агрегатах система впрыска, как правило, связана с

системой зажигания, образуя при этом объединенную систему впрыска и зажигания (к примеру, системы Fenix, Motronic). А система управления двигателем обеспечивает согласованную работу этих систем.

Системы впрыска дизельных двигателей

В дизельных силовых установках впрыск топлива осуществляется двумя способами: непосредственно в камеру сгорания либо в предварительную камеру.

ДВС с впрыском топлива в предварительную камеру отличаются плавностью работы и низким уровнем шума. Однако на сегодняшний день автопроизводители отдают предпочтение именно системам непосредственного впрыска – хотя они и отличаются повышенным уровнем шума, системы обеспечивают высокую экономичность. Главным элементом конструкции системы впрыска дизельного мотора является ТНВД (топливный насос высокого давления).

Легковые машины с дизельными двигателями могут оснащаться различными конструкциями системами впрыска: с распределительным ТНВД, рядным ТНВД, Сommon Rail, насос-форсунками. Более совершенными считаются две последние системы.

В системе впрыска насос-форсунками за создание высокого давления и впрыск топлива отвечает одна деталь – насос-форсунка. Это устройство имеет неотключаемый привод от распределительного вала силового агрегата, чем и обусловлен быстрый износ. Из-за этого недостатка автопроизводители отдают предпочтение системе Сommon Rail.

Система впрыска Сommon Rail работает по принципу подачи топлива к форсункам от общего аккумулятора высокого давления – топливной рампы (от англ. common rail – общая магистраль). Данную систему также называют аккумуляторной системой впрыска. Чтобы улучшить самовоспламенение топлива, снизить уровень шума и вредные выбросы, в системе предусмотрен поэтапный впрыск топлива:

  • Предварительный;
  • Основной;
  • Дополнительный.

В дизельных силовых установках системы впрыска могут иметь электронное и механическое управление. С помощью электроники создана система управлением дизелем. А в механических системах регулирование объема, давления и момента подачи топлива осуществляется механическим способом.

Комбинированный впрыск топлива или непосредственно-распределенный,что это такое?

комбинированный впрыск, двигатели +с непосредственным впрыском топлива, комбинированный впрыск топлива, двигатель +с комбинированным впрыском, система питания +с комбинированным впрыском, комбинированный впрыск непосредственно распределенный, система распределенного впрыска топлива, распределенный +и непосредственный впрыск топлива, распределенный впрыск топлива +что +это, система непосредственного впрыска топлива, непосредственный впрыск топливаБензиновый двигатель с непосредственным впрыском топлива имеет большие преимущества такие как экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов, но в то же время на некоторых режимах работы образует большое количество твердых частиц сажи, которая в свою очередь попадает в атмосферу. Их содержание может превышать выбросы такого же по объему дизеля.

Для уменьшения выбросов в атмосферу и исполнения экологических норм ЕВРО-6 концерн VAG (Volkswagen Audi Gruppe) и чуть позже Toyota разработали комбинированную систему впрыска топлива объединяющую систему непосредственного впрыска и систему распределенного впрыска на одном двигателе. При изменении режимов работы двигателя внутреннего сгорания электронный блок управления переключает работу между системами впрыска. В результате инженерам удалось на двигателях с комбинированным впрыском увеличить мощность, крутящий момент, сократить расход топлива, уменьшить выбросы CO2 в окружающую среду и соответствовать экологическим нормам.

Сейчас комбинированная или непосредственно-распределенная система впрыска устанавливается на двигателях VAG TFSI объемом 1,8 и 2,0 литра и Toyota 6AR-FSE 2,0 литра. Система питания с комбинированным впрыском включает в себя элементы обоих систем: форсунки, топливную рампу высокого давления, форсунки, топливную рампу низкого давления, а также насос высокого давления обеспечивающий питание обеих систем.

Элементы обеих топливных систем установлены так же как на двигателях присущих им. Работа непосредственно-распределенной системы впрыска осуществляется в зависимости от нагрузки на двигатель внутреннего сгорания. При пуске, прогреве, а так же при максимальной нагрузке активна система непосредственного (прямого) впрыска топлива. И при разных режимах идет разное количество инжекции топлива например: при запуске – три впрыска на такте сжатия; на холодном двигателе – один впрыск на такте впуска; при прогреве двигателя и движении с максимальной нагрузкой – два впрыска, один на такте впуска, другой на такте сжатия. Форсунки непосредственного впрыска периодически подключаются для предотвращения их засорения. Система распределенного впрыска подключается только при частичной нагрузке и на средних мощностных характеристиках работы двигателя. В основном этот режим работы присущ размеренной городской езде с частыми остановками и стартами автомобиля.

комбинированный впрыск, двигатели +с непосредственным впрыском топлива, комбинированный впрыск топлива, двигатель +с комбинированным впрыском, система питания +с комбинированным впрыском, комбинированный впрыск непосредственно распределенный, система распределенного впрыска топлива, распределенный +и непосредственный впрыск топлива, распределенный впрыск топлива +что +это, система непосредственного впрыска топлива, непосредственный впрыск топливаОптимизация режимов впрыска топлива в соответствии с режимами работы двигателя позволяет достичь минимального выброса сажевых частиц в атмосферу с отработавшими газами. Необходимо отметить, что при выходе из строя одной из систем впрыска двигатель продолжает работать в аварийном режиме, а автомобиль имеет возможность двигаться.

устройство, принцип подачи топлива, классификация


Системы впрыска топлива бензиновых двигателей –  это системы для дозированной подачи бензина в ДВС. Тип устройства, характеристика системы влияет на ряд важных показателей. Это экологический класс двигателя, его мощность, топливная эффективность.

Устройство системы впрыска бензинового двигателя может иметь различные конструктивные решения и модификации. О них мы расскажем, останавливаясь на конкретных видах систем впрыска.

Варианты топливных систем бензиновых двигателей

Впрыск топлива в воздушный поток может происходить как за счёт разрежения, так и за счёт избыточного давления. Например, в карбюраторе впрыскивание происходит за счёт разрежения, а в большинстве современных систем — за счёт избыточного давления.
  • центральным (например, наддроссельный впрыск),
  • распределённый или коллекторный (осуществляется отдельной форсункой в предкамеру, расположенную перед впускным клапаном каждого цилиндра двигателя),
  • непосредственный (осуществляется напрямую в камеры сгорания, отдельными форсунками), встречается в разных вариациях, характерен для современных автомобилей. .


Варианты топливных систем бензиновых двигателей (R R. Bosch)

Конструктивное решение с карбюраторами


Дольше всего человечество знакомо с подачей топлива посредством карбюратора. И не потому, что такие решения лучшие, а потому что они – первые. И через множество лет это были единственно доступные системы. Карбюратор был неотъемлемой частью топливной системы на протяжении сотни лет. Нельзя сказать, что сейчас карбюраторы полностью исчезли из жизни, но на легковой и коммерческий транспорт карбюраторы ставить перестали. Их можно увидеть только на средствах малой механизации, которые применяются для садовых, строительных работ.
 
Автопром же перестал выпускать машины с карбюраторной системой еще в 90-е годы прошлого века.
Принцип их действия основан на всасывании  топлива в поток воздуха, проходящего через сужение карбюратора. увеличение скорости движения воздуха в месте сужения воздушного канала формирует  разрежение воздуха.  

Объём воздуха, который проходит через сужение воздушного канала, пропорционален объёму топлива, поступающего через распылитель карбюратора. Благодаря этому несложно в автоматическом режиме поддерживать требуемое отношение топлива к воздуху.

Как работает устройство?

  1. Топливо из бака выбирает насос (управляемый механически или электрически – в зависимости от модели).
  2. ДВС запускается, и поток воздуха, проходящий через сужение воздушного канала карбюратора, создает разрежение. 
  3. В смесительную камеру карбюратора поступает топливо.
  4. Жиклер (калиброванное отверстие) дозирует топливо.
С точки зрения работы всё достаточно просто. Так почему же карбюраторы уходят в историю? 

Здесь достаточно много причин:

  • Низкая экономичность, а соответственно, и низкий уровень топливной эффективности.
  • Проблемы при переменных режимах работы, снижающие динамические качества- автомобиля.
  • Прямая зависимость от расположения двигателя в автомобиле.
  • Выброс в окружающую среду большого количества вредных веществ (несоответствие нормативам эмиссии газообразных вредных выбросов в атмосферу).

Моновпрыск 


На смену карбюратору пришла система так называемого «над дроссельного впрыска» топлива. Она также известна как моновпрыск или система центрального впрыска.

Принцип базируется на впрыске топлива одной форсункой, установленной на впускном коллекторе двигателя.

Самыми популярными конструкциями системы центрального впрыска являются решения Mono-Jetronic от R. R. Bosch и Opel-Multec (как нетрудно догадаться из названия, это решение корпорации Opel).

Появление моновпрыска приходится на середину 70-х годов 20-го века. В то время системой Mono-Jetronic стали оснащать автомобили Volkswagen и Audi.

Главной задачей при разработке моновпрыска стало нахождение альтернативы карбюраторной системе впрыска. Важно было найти более эффективную систему топливоподачи, которая смогла бы удовлетворить возросшим экологическим требованиям.

Mono-Jetronic: конструктивные элементы

  • Регулятор давления. Способен поддержать на стабильном уровне рабочее давление в системе впрыска, а после выключения ДВС сохранить остаточное давление в системе . Это важно для облегчения пуска, создание барьеров против образования паровых пробок.
  • Электромагнитный клапан (форсунка). Обеспечивает импульсный впрыск топлива. Управление клапаном осуществляется посредством электросигнала. Он идёт от блока управления.
  • Дроссельная заслонка. Регулятор объема поступающего воздуха.
  • Привод. Он ответственный за работу дроссельной заслонки.
  • Электронный блок управления. «Мозг», синхронизатор.
Входные датчики (момента впрыска, положения дроссельной заслонки, оборотов двигателя, концентрации кислорода и т.д.).

Распределённый впрыск

В 70-е годы появились и системы распределительного впрыска, основанные на подаче топлива отдельной форсункой в предкамеру, расположенную перед впускным клапаном каждого цилиндра двигателя. Впрыск может быть при этом может быть как импульсным, так и непрерывным. 

Мы остановимся на решении K-Jetronic производителя Robert R. Bosch с непрерывным впрыском. K-Jetroniс активно присутствовала на рынке с 1973-го по 1995 годы.  Сначала K-Jetroniс выпускалась с механической системой дозирования. С 1982 года — с электронной начинкой и электронным управлением дозирования. Начиная с версий (модификаций) с электронным управлением система стала называться KE-Jetroniс.

Экономические характеристики автомобилей, их уровень топливной эффективности был существенно улучшен, уровень выбросов вредных веществ в выхлопе также снизился.

В системах K/KE-Jetronic впрыск топлива осуществлялся непрерывно в смесительную камеру перед впускным клапаном. При этом количественное дозирование топлива, поступающего в поток воздуха, производилось за счет взаимосвязанных узлов «расходомер – дозатор».

Помимо дозатора-распределителя обязательный элемент решения – дроссельная заслонка, расположенная за дозатором, у первых версий были вакуумно-механические клапаны коррекции топлива(запуск клапанов в работу возможен как от терморегуляторов, так от разряжения воздуха во впускном коллекторе), в поздних модификациях появились электрические клапаны коррекции топлива. Кроме того, системы  стали оснащать кислородным датчиком (лямбда-зондом). Огромным плюсом схемотехнического решения стало то, что система впрыска могла быть оснащена  катализаторам-, но к уровню надёжности были существенные вопросы.

Дискретный впрыск топлива

Новой эрой стал дискретный впрыск топлива. Первой здесь стала электронная система распределенного впрыска топлива L-Jetronic – опять-таки от R. R. Bosch. С появлением этого решения стало возможным говорить о качественной управляемости, безотказности, надёжности. Да, сразу же стало ясно, что это средний и высокий ценовой сегмент. Поэтому долгое время системы дискретного впрыска топлива сосуществовали с системами непрерывного распределительного впрыска типа K/KE-Jetronic.

Но постепенно L-Jetronic обрела массовость. Её стал активно использовать практически весь европейский автопром. Явные плюсы оценили и водители, и персонал автосервиса: повысилась топливная экономичность авто. Для обслуживания перестали быть нужны сложные навыки (в первую очередь, это стало возможным за счёт того, что отпала надобность выполнять механические настройки).

L-Jetronic несколько раз модернизировалась и уверенно держалась на рынке до появления стандарта Евро-3. После чего более актуальными стали решения на основе термоанемометрических датчиков массметра (массового расхода воздуха). В частности, популярность приобрела модификация LH-Jetronic .

У новой разработки стала доступна индивидуальная регулировка подачи топлива в каждый из  цилиндров
Объединяющая черта систем Mono-Jetronic, L-Jetronic, LH-Jetronic состоит в том, это все эти решения управляют только впрыском топлива, при этом для воспламенения топлива задействована система зажигания с модулем электронного управления. 

Устройства, в которых система и зажигания и впрыск были синхронизированы и объединены, корпорация R.R. Bosch начала выпускать с 1979 года.


Ярким примером решения с объединёнными системами впрыска и зажигания – стала система Motronic от R.R. Bosch. 
Она существовала в нескольких модификациях, появившихся в 90-е годы 20-го века. В эти годы в их конструкции входили механические расходомеры воздуха. Но вскоре вместо них стали использоваться термоанемометрические датчики-расходомеры, расширились возможности для самодиагностики.

Правда, полностью удовлетворить запросам диагноста  системы не могли, поскольку  протокол выявления неисправностей не обладал высокой результативностью. В последующих модификациях эта проблема была успешно решена.


Но самым революционным решением Motronic стало появление датчика абсолютного давления во впускном коллекторе (MAP-sensor).

Использование  MAP-сенсора в системе управления двигателем позволило  готовить качественную топливовоздушную смесь, состав которой близок к желаемому, и, главное, не сложно соблюсти европейские требования к выхлопам автомобилей.

Но для выхода на американский рынок даже этого было недостаточно. По стандартам США в топливной системе должна быть обязательная система контроля утечек паров топлива из бака. Так появилось инновационное решение Motronic M5. С ним появились все условия для того, чтобы исключить эксплуатацию автомобиля с потерявшей герметичность пробкой заливной горловины или неисправной системой вентиляции топливного бака.


Кроме того, эта система соответствует требованиям самого строгого протокола самодиагностики OBD-II/CARB.

А благодаря электроуправлению дроссельной заслонкой отлажено взаимодействие между системой управления двигателем и системой торможения.  

Системы непосредственного впрыска 
 
Особое место среди систем впрыска бензиновых двигателей получили системы непосредственного впрыска.
Их принцип действия основан на том, что топливо посредством инжектора распыляется прямо в цилиндр двигателя.

  • Это важно для достижения топливной экономичности.
  • Плунжерный насос. Подаёт топливо в рампу, соединённую с форсунками. 
  • Регулятор давления топлива. Поддерживает стабильное рабочее давление в топливной рампе. Топливная рампа. Здесь непосредственно происходит процесс распределения топлива по форсункам.
  • Предохранительный клапан на рампе. Защищает рампу от предельных давлений.
  • Датчик высокого давления. Замеряет давление в рампе, подаёт сигнал блоку управлением двигателя на коррекцию давления.

Согласование взаимодействия  узлов осуществляется посредством электронной системы управления двигателем. От блока электронного управления поступают команды на исполнительные механизмы.


Интересная деталь! Если среди дизельных систем впрыска такие топливные системы были популярны давно, то среди бензиновых распространение получили не сразу. Причина элементарно проста: бензин в отличие от дизельного топлива является плохой смазкой, что вызывало быстрый износ» топливного насоса.

Но с развитием технологий уплотнений разработчики снова смогли заняться бензиновыми системами с прямым впрыском топлива. Система непосредственного впрыска может обеспечивать несколько видов смесеобразования: послойное, однородное (гомогенное), и стехиометрическое. Послойное смесеообразование актуально при малых и средних оборотах, стехиометрическое и гомогенное – при сверхвысоких оборотах, а также при средних и высоких нагрузках.

Самые популярные решения – с послойным смесеобразованием. Их хорошо знают по названию FSI и TFSI (у Volkswagen и у Ауди). Буква “T” в названии свидетельствуют о наличии турбокомпрессора, то есть двигатель, как именуется в просторечии — “турбирован”.

В цилиндр таких бензиновых систем впрыска поступает небольшое количество топлива. Тщательная организация потока воздуха в цилиндре (его траектория движения, подобная «кувырку) и удачно подобранное время впрыска топлива в цилиндр создают  все условия, чтобы это небольшое количество топлива было подано к электродам  свечи зажигания, и произошло воспламенение этой порции горючей смеси.


Почему на эту бензиновую систему впрыска не переходят повсеместно. К сожалению, актуальна такая проблема, как «турбоямы» при резком нажатии на педаль газа.

Этот недостаток полностью устранен при наличии наддувочного агрегата с электроприводом. Такие системы недёшевы. Но оперативно выйти на режим максимальной мощности, избежать «турбоям» при резком нажатии педали на газ с ними – не проблема. Прямой впрыск SC-E актуален, например, для ряда спортивных автомобилей.

Очень высокий интерес – и к битопливным (бинарным) система с газотурбинным наддувом. При работе на бензине можно достичь очень хорошего крутящего момента.

Параметры применяемого топлива прописываются в постоянной памяти. Если нужно заменить бензин на альтернативное топливо, изменяется программа смесеобразования. Это очень удобно.

Какой впрыск лучше?


Очень часто спорят: какой впрыск лучше.  Дешевле всего обойдутся решения, ориентированные на распределённый  впрыск. Подкупает и то, что они не требовательны к качеству топлива.

Если вам важно, чтобы была высокая топливная эффективность при минимальных значениях  вредных выбросов, однозначно стоит выбирать непосредственный впрыск. Да, эти решения дороже. Но лучше  заплатить больше единожды, чем постоянно “съедать” лишнее топливо. 

Кстати, дороговизна решения связана, главным образом, с тем, что производителям пришлось внести кардинальные изменения в конструкцию головок цилиндров, однако в ремонте эти двигатели значительно дороже простых и надёжных двигателей с распределённым предкамерным впрыском топлива.

Не просто изучить топливные системы, а попрактиковаться работать в поиске различных неисправностей в них вам поможет специализированный тренажёр на платформе  ELECTUDE. Отличное подспорье для автомобильных механиков и диагностов. 

Совершенство непосредственности: 80 лет эволюции моторов с прямым впрыском

Битва в воздухе

Так уж получилось, что первые двигатели внутреннего сгорания были рассчитаны на работу на газовоздушной смеси, а вовсе не на жидкости. И именно возможность создания простейшего устройства испарения топлива позволила бензиновым моторам завоевать себе главенствующее место в мире, потеснив и паровые машины, и дизели. Бензиновые моторы и сейчас порой ошибочно называют «карбюраторными», отдавая дань той схеме питания, с которой они родились и развивались почти столетие.

В противоположность карбюраторным моторам дизели не называли «моторами с непосредственным впрыском» – ограничивались классификацией по типу топлива. И очень правильно сделали, ведь перед Второй мировой непосредственный впрыск массово появился на бензиновых авиационных моторах. Внедряли такие системы питания для повышения надежности работы компрессорных двигателей при больших ускорениях и при сильном изменении как атмосферного давления, так и давления наддува. Об экономичности, заметим, тогда задумывались мало.

Первым «непосредственным» мотором считается немецкий Daimler-Benz DB601, который испытали еще в 1935 году, а в серию он пошел после 1937-го. Кстати, производили его в Италии – как Alfa Romeo, а в Японии – как Kawasaki. Его наследник DB605 оснащался непосредственным впрыском, а заодно и турбонаддувом, прямо как современные моторы TSI. И имел очень высокую для тех лет степень сжатия – 7,3/7,5.

Эти V-образные 12-цилиндровые двигатели применялись на самых массовых немецких истребителях второй мировой – Me109 в различных вариантах, и обеспечивали им очень высокую мощность и высотность. Не в последнюю очередь благодаря удачному сочетанию системы питания и наддува. Лицензию на DB601 дали и другим производителям авиамоторов «стран Оси», и к немецкому опыту приобщились моторостроители Италии и Японии.

По другим данным, первенцем все же является Jumo 210G, но сейчас это не столь принципиально. В итоге СССР, США и Англия от немцев немного отстали, но свои моторы с такой системой впрыска сделали и войну выиграли. А «непосредственный» мотор конструкции Швецова, АШ-82ФН, послужил основой для двигателей пассажирских Ил-12/Ил-14. Кстати, на этой модификации впрыск был комбинированным – для улучшения пусковых качеств.

На фото двигатель АШ-82ФН

Что роднит все авиационные моторы с непосредственным впрыском этого поколения? Высокая сложность обслуживания и эксплуатации. Но для военных нет такого слова, как «дорого», да и слово «сложно» тоже их не волнует, если итоговая надежность работы и характеристики их устраивают. Победа нужна любой ценой – даже в технике.

Бензин с примесью масла для смазки ТНВД (топливного насоса высокого давления), тонкая настройка топливной аппаратуры и ресурс всего мотора в пределах 200-400 часов – это не страшно. Главное – устойчивая работа при высочайших перегрузках, когда пилот уже теряет зрение, а конструкция трещит по швам, работа в перевернутом положении, работа при температуре воздуха -50 °C и при жаре +40 °C… Да к тому же карбюраторы очень плохо сочетались с системной наддува, которая обязательно применялась на высотных истребителях и бомбардировщиках, так что непосредственный впрыск был очень удачной заменой.

Попытка номер раз, ТНВД и насос-форсунки

После войны непосредственный впрыск «на гражданке» не прижился – очень известный Mercedes 300SL считать «обычной машиной» как минимум странно. Borgward недолго выпускал свой 700 Sport с двухтактным (!) мотором непосредственного впрыска. Зато гоночные автомобили оценили новые возможности: и Ferrari, и Mercedes успешно опробовали новшества.

Знаменитый гонщик Хуан Мануэль Фанхио на Mercedes Typ W196 с непосредственным впрыском выиграл чемпионат мира Формулы-1 1954 и 1955 годов. Правда, подавляющее преимущество над соперниками дал вовсе не впрыск, а возможности команды и десмодромный ГРМ рядного восьмицилиндрового мотора с рабочими оборотами 8 500 в минуту. А после разрешения в регламенте Формулы наддува непосредственный впрыск применили и в Ferrari. И на протяжении нескольких лет успели опробовать какое-то количество конструктивных схем системы питания. Надо сказать, весьма успешно.

Суть конструкции мало изменилась с сороковых годов: все тот же практически «дизельный» ТНВД и простые форсунки. Варьировалось только конструктивное исполнение: форсунки могли быть боковыми с верхним, нижним или центральным расположением, а топливный насос различался по способу регулирования и количеству настроенных режимов.

Попробовали почти все варианты исполнения системы, доступные на тот момент. Вскоре выяснилось, что надежность топливной аппаратуры оставляет желать лучшего, настройка крайне сложна, а при отказе системы растет риск выхода из строя мотора целиком. Это уже не говоря об очень высокой цене такой системы питания. Плюс, для атмосферных моторов прирост мощности оказался откровенно невелик, а экономичность все еще не имела особого значения при проектировании автомобилей. По сути, основной причиной экспериментов с впрыском было широкое внедрение наддува на гоночных машинах того периода.

Главная претензия была к возможностям настройки ТНВД – их не хватало даже для гоночных машин. Регулирование по давлению во впускном коллекторе и степени открытия дроссельной заслонки показало себя не очень точным. Попытки приспособить электронику для управления еще больше снижали надежность, хотя идея была не нова – впервые электроуправляемый впрыск появился еще на мотоциклах Guzzi в 1939 году.

Форсунки тоже оказались очень уязвимы – не зря на тот момент многие производители предпочли вариант с их боковым расположением на стенке блока ниже ВМТ (верхней мертвой точки), где поршень закрывал форсунку в момент воспламенения. Это немного уменьшало закоксовывание и шансы на перегрев форсунки, но всех проблем не решало, к тому же создавало новые – с поршневыми кольцами, например.

В общем, карбюратор и набирающий популярность обычный распределенный впрыск на тот момент оказались лучше за счет более простой и надежной конструкции. Причем как на гражданских машинах, так и на гоночных. В конце 60-х о прямом впрыске забыли, и надолго, а заодно запретили наддув в большинстве гоночных классов. Прогресс в этом направлении остановился.

Попытка номер два, уже с электроникой

Снова вспомнили о технологии уже в девяностые годы, когда обычный распределенный впрыск с электронным управлением прочно завоевал свое место под солнцем. Компания Mitsubishi вложила немало сил в развитие и рекламу моторов GDI, а Toyota – двигателей D4. У обоих был непосредственный впрыск.

В первую очередь акцент делался уже на экономичность такого решения – на малой нагрузке такой мотор в теории мог работать на сверхобедненной смеси, с соотношением бензин-воздух порядка 40 к 1 вместо «идеального» 14,7 к 1.

Что обещало до 20% экономии топлива.

А вот на практике получилось не так уж здорово.

Сниженного расхода топлива добиться было нереально. Моторы Mitsubishi на целом ряде модификаций, особенно европейских, вообще не работали на переобедненной смеси, прошивка этого не позволяла. И даже если мотор имел подобные режимы, то в реальной эксплуатации работал на них очень редко. Система управления старалась их не допускать для предотвращения излишних выбросов окислов NO – с ними не могли справиться даже очень дорогие специальные катализаторы.

А вот топливная аппаратура оказалась отменно капризной – в частности, пусковые качества в холодную погоду пострадали. Хорошо хоть с настройкой режимов работы мотора проблем не возникло благодаря широкому внедрению электроники.

Зато уже на примере первых моторов GDI накопился богатый опыт, который говорил о плохих условиях работы впускных клапанов и повышенной склонности к залеганию поршневых колец. Компания даже специально разработала жидкость для раскоксовки – Mitsubishi Shumma, которая до сих пор остается единственным специализированным «заводским» средством для подобного применения. Других сопутствующих проблем тоже хватало – например, форсунки пропускали топливо в масло, причем в больших количествах. Особых проблем это не доставляло, пока объем бензина не превосходил объем масла.

«Тойотовцы», в отличие от своих соотечественников, благоразумно решили не выводить свои «непосредственные» моторы за пределы домашнего рынка, а вот Mitsubishi, что называется, получили «по полной». Удар по репутации получился значительный, и последствия аукаются до сих пор.

Возможности на новом уровне

После устранения первых «детских болезней» плюсы стали более очевидными. Такие моторы позволяли почти избежать риска детонации до момента зажигания, а значит – безбоязненно повышать степень сжатия бензиновых моторов до практического максимума в 12:1 – 13:1 и не снижать ее для двигателей с компрессорами и турбонаддувом. Некоторое уменьшение надежности работы почти окупалось снижением расхода топлива и повышенной мощностью.

Особенно удачно все сложилось для «даунсайзинговых» моторов, ведь малый объем, высокий КПД и хорошие возможности для форсирования – это как раз то сочетание, которое было просто необходимо европейским автопроизводителям, зажатым в тиски правил ЕС по ежегодному снижению расхода топлива.

При малой нагрузке и большом коэффициенте остаточных газов в цилиндре, в результате работы системы EGR или фазовращателей, можно было побаловаться и работой на сверхобедненной смеси, и послойным смесеобразованием. Выбросы NO при этом удается удержать в пределах нормы, меньше, чем у дизельных моторов. Особенно хорошо себя проявили при этом быстродействующие форсунки высокого давления, например, с пьезокерамикой. Впрочем, по сравнению с даунсайзингом все это большого эффекта уже не дает.

Новые моторы с непосредственным впрыском не пришлось долго ждать. FSI моторы от VW, а вслед за ними и TFSI – уже с турбонаддувом и компрессорами. CGI версии двигателей от Mercedes были в основном компрессорными, реже – атмосферными, и лишь в последние годы – с турбонаддувом. Следом – непосредственный впрыск на моторах BMW, Opel, Ford и всех остальных…

Сейчас найти в Европе двигатель с обычным распределенным впрыском и без турбонаддува – целая проблема. Для машин до D-класса включительно такие можно пересчитать по пальцам. Автопроизводители Японии и США направление развития поддержали, но широкий выпуск таких моторов начали гораздо позже, когда европейские производители уже набили шишек на вопросах надежности и экологичности.

Кстати, оба первопроходца в лице Mitsubishi и Toyota все эти годы держали в производственной гамме совсем мало моделей с непосредственным впрыском: эксперименты показали, что атмосферным моторам он не очень нужен, а турбированного даунсайза у них в производственной гамме попросту не было.

***

В следующей части материала о непосредственном впрыске мы поговорим о тонкостях его конструкции, проблемах в эксплуатации, плюсах и минусах… А еще попытаемся понять, может ли он хотя бы теоретически стать столь же надежным, как заслуженный распределенный впрыск, к которому мы все так привыкли.

Непосредственный впрыск — скорее зло или скорее добро?

Четыре различных типа впрыска топлива

Транспортные средства регулируют вашу скорость и ускорение, изменяя соотношение топлива и воздуха, поступающего в двигатель. Исторически этим занимались карбюраторы. Даже сегодня многие мотоциклы, генераторы и другие простые двигатели полагаются на углеводы для управления частотой вращения двигателя. Но это довольно примитивная технология, и с 1970-х годов система впрыска топлива позволила транспортным средствам стать более мощными и более экономичными. Конечно, технология существовала и раньше.Но только в этот раз это произошло потому, что оно зарекомендовало себя как лучший способ доставки топлива.

Нам нравится впрыск топлива почти в каждом современном автомобиле. Но не все системы впрыска топлива созданы одинаково, и некоторые из них значительно превосходят другие. Какой тип у вашей машины? Какое влияние на характеристики вашего автомобиля оказывает тип используемых вами топливных форсунок? Читай дальше что бы узнать.

Современные двигатели сильно отличаются от тех, что мы использовали 30 лет назад. Производители автомобилей вкладывают много времени и денег в разработку своих двигателей, и эти изменения происходили медленно в течение длительного периода времени.Когда система впрыска топлива впервые появилась на рынке, эта технология была модернизирована для двигателей, которые были разработаны для использования карбюраторов. Эта ранняя технология называлась впрыском топлива в корпус дроссельной заслонки , или TBFI. По мере совершенствования технологии мы перешли к с многоточечным впрыском . Хотя эта технология все еще используется в некоторых автомобилях эконом-класса, наиболее популярным типом является многопортовый впрыск . Наконец, перспективной технологией является многопортовый впрыск . Прочтите, чтобы узнать о различиях между ними и о том, что это означает с точки зрения производительности и обслуживания.

Впрыск топлива корпуса дроссельной заслонки

Также называемый однопортовым, это был самый ранний тип впрыска топлива, появившийся на рынке. Все автомобили имеют впускной коллектор, через который в двигатель сначала поступает чистый воздух. TBFI работает, добавляя правильное количество топлива в воздух перед его распределением по отдельным цилиндрам. Преимущество TBFI в том, что он недорогой и простой в обслуживании. Если у вас когда-нибудь возникнет проблема с инжектором, вам нужно заменить только один. Кроме того, поскольку этот инжектор имеет довольно высокий расход, его не так просто засорить.

Технически системы корпуса дроссельной заслонки очень прочные и требуют меньшего обслуживания. При этом впрыск дроссельной заслонки сегодня используется редко. Транспортные средства, которые все еще используют его, достаточно стары, поэтому обслуживание будет более серьезной проблемой, чем это было бы с более новым автомобилем с меньшим пробегом.

Еще один недостаток TBFI — неточность. Если вы отпустите педаль акселератора, в воздушной смеси, поступающей в ваши цилиндры, все равно будет много топлива. Это может привести к небольшой задержке перед замедлением или, в некоторых автомобилях, к выбрасыванию несгоревшего топлива через выхлопную трубу.Это означает, что системы TBFI не так экономичны, как современные системы.

Многопортовый впрыск

Многоточечный впрыск просто перемещал форсунки дальше вниз по направлению к цилиндрам. Чистый воздух поступает в первичный коллектор и направляется в каждый цилиндр. Инжектор расположен в конце этого порта, прямо перед тем, как он всасывается через клапан в ваш цилиндр.

Преимущество этой системы в том, что топливо распределяется более точно, при этом каждый цилиндр получает свою собственную струю топлива.Каждая форсунка меньше и точнее, что позволяет снизить расход топлива. Обратной стороной является то, что все форсунки распыляют одновременно, а цилиндры срабатывают один за другим. Это означает, что у вас может быть остаток топлива между периодами впуска или у вас может возникнуть возгорание цилиндра до того, как форсунка сможет подать дополнительное топливо.

Многопортовые системы

отлично работают, когда вы путешествуете с постоянной скоростью. Но когда вы быстро ускоряетесь или убираете ногу с дроссельной заслонки, такая конструкция снижает либо экономию топлива, либо производительность.

Последовательный впрыск

Системы последовательной подачи топлива очень похожи на многопортовые системы. При этом есть одно ключевое отличие. Последовательная подача топлива — раз. Вместо того, чтобы все форсунки срабатывали одновременно, они подают топливо одна за другой. Время согласовано с вашими цилиндрами, что позволяет двигателю смешивать топливо прямо перед тем, как клапан открывается, чтобы всасывать его. Такая конструкция позволяет улучшить экономию топлива и производительность.

Поскольку топливо остается в порту только на короткое время, последовательные форсунки имеют тенденцию служить дольше и оставаться более чистыми, чем другие системы. Благодаря этим преимуществам на сегодняшний день наиболее распространенным типом впрыска топлива в транспортных средствах являются последовательные системы.

Единственным небольшим недостатком этой платформы является то, что она оставляет меньше места для ошибок. Топливно-воздушная смесь всасывается в цилиндр только через мгновение после открытия форсунки. Если он грязный, забитый или не реагирует, ваш двигатель будет испытывать нехватку топлива.Форсунки необходимо поддерживать на максимальной мощности, иначе ваш автомобиль начнет работать с неровностями.

Прямой впрыск


Если вы начали замечать закономерность, вы, вероятно, догадались, что такое прямая инъекция. В этой системе топливо впрыскивается прямо в цилиндр, полностью минуя воздухозаборник. Производители автомобилей премиум-класса, такие как Audi и BMW, хотят убедить вас, что прямой впрыск является новейшим и лучшим вариантом. Что касается характеристик бензиновых автомобилей, они абсолютно правы! Но эта технология далеко не нова.Он использовался в авиационных двигателях со времен Второй мировой войны, и почти все дизельные автомобили имеют непосредственный впрыск, потому что топливо намного гуще и тяжелее.

В дизельных двигателях прямой впрыск очень надежен. Доставка топлива может потребовать много злоупотреблений, а проблемы с обслуживанием сведены к минимуму.

В бензиновых двигателях непосредственный впрыск применяется почти исключительно в транспортных средствах с высокими характеристиками. Поскольку эти автомобили работают с очень точными параметрами, особенно важно поддерживать вашу систему подачи топлива.Несмотря на то, что автомобиль будет продолжать работать в течение долгого времени, если им пренебречь, его характеристики быстро снизятся.

Когда использовать очиститель топливных форсунок

Вы должны пропускать через двигатель баллончик с разбавленным очистителем для топливных форсунок несколько раз в год, чтобы предотвратить накопление нагара. Если у вас старый автомобиль, который не работает так хорошо, как раньше, может потребоваться более агрессивное решение. Для получения дополнительной информации о лучшем очистителе топливных форсунок, которое вы можете купить, ознакомьтесь с нашим руководством для покупателей.

Когда заменять топливные форсунки

У дроссельной заслонки и многопортовых систем есть несколько ключевых признаков неисправного инжектора. Часто автомобилю будет трудно заводиться, и он будет сжигать намного больше топлива. У вашего автомобиля будет намного меньше мощности, чем когда он был новым. Поскольку форсунки со временем изнашиваются, трудно заметить постепенное снижение производительности. При этом ваш механик сможет обнаружить проблему с доставкой топлива во время базовой проверки.

При последовательном и прямом впрыске признаки более очевидны.Вы заметите грубый холостой ход, и автомобиль может вибрировать и дребезжать сильнее, чем обычно. Вам может быть трудно разогнаться до полных оборотов, а ускорение может иметь более «агрессивный» звук.

Форсунки

играют решающую роль в работе вашего автомобиля, и важно понимать, как они работают в вашем конкретном автомобиле. Теперь, когда вы знаете четыре типа, вам будет легче предпринять соответствующие шаги, чтобы обеспечить их работу в течение многих лет.

Привет читателям ShedHeads! Меня зовут Джеймс Кеннеди, и мне, безусловно, нравилось писать о моем любимом снаряжении для активного отдыха на протяжении многих лет.Хотя я веду этот блог только с 2017 года, я всю жизнь увлекался отдыхом на природе. И хотя мне, безусловно, нравится делиться своим мнением со всеми вами, мне еще больше нравится, когда я слышу ваши отзывы! Если вы хотите связаться со мной по поводу того, что я написал, свяжитесь со мной на Facebook или на нашей странице контактов вверху!

Последние сообщения Джеймса Кеннеди (посмотреть все)

Как работает система впрыска топлива

Для двигатель для бесперебойной и эффективной работы он должен быть обеспечен нужным количеством топливо / воздушная смесь в соответствии с ее широким спектром требований.

Система впрыска топлива

В автомобилях с бензиновым двигателем используется непрямой впрыск топлива. Топливный насос отправляет бензин в моторный отсек, а затем он впрыскивается во впускной коллектор с помощью инжектора. Имеется либо отдельный инжектор для каждого цилиндра, либо одна или две форсунки во впускной коллектор.

Традиционно топливно-воздушная смесь регулируется карбюратор , инструмент, который ни в коем случае не идеален.

Его основным недостатком является то, что один карбюратор питает четыре цилиндр двигатель не может подавать в каждый цилиндр точно такую ​​же топливно-воздушную смесь, потому что некоторые цилиндры находятся дальше от карбюратора, чем другие.

Одно из решений — соответствовать сдвоенные карбюраторы, но их сложно правильно настроить. Вместо этого многие автомобили теперь оснащаются двигателями с впрыском топлива, в которых топливо подается точными порциями. Двигатели, оборудованные таким образом, обычно более эффективны и мощнее карбюраторных, а также могут быть более экономичными и менее ядовитыми. выбросы .

Впрыск дизельного топлива

В впрыск топлива система в автомобилях с бензиновым двигателем всегда косвенная, бензин впрыскивается во впускной многообразие или впускной порт, а не непосредственно в камеры сгорания .Это обеспечивает хорошее смешивание топлива с воздухом перед тем, как попасть в камеру.

Многие дизельные двигатели однако используется прямой впрыск, при котором дизельное топливо впрыскивается непосредственно в цилиндр, заполненный сжатым воздухом. Другие используют непрямой впрыск, при котором дизельное топливо впрыскивается в камеру предварительного сгорания специальной формы, которая имеет узкий канал, соединяющий ее с камерой сгорания. крышка цилиндра .

В цилиндр втягивается только воздух. Он так сильно нагревается сжатие распыленное топливо, впрыскиваемое в конце ход сжатия самовоспламеняется.

Базовая инъекция

Во всех современных системах впрыска бензина используется непрямой впрыск. Специальный насос отправляет топливо под давление от топливный бак в моторный отсек, где, все еще находясь под давлением, он распределяется индивидуально по каждому цилиндру.

В зависимости от конкретной системы топливо подается во впускной коллектор или впускной канал через инжектор . Это работает так же, как спрей сопло из шланг , чтобы топливо выходило в виде мелкого тумана.Топливо смешивается с воздухом, проходящим через впускной коллектор или канал, и топливно-воздушная смесь поступает в горение камера.

Некоторые автомобили имеют многоточечный впрыск топлива, при котором каждый цилиндр получает питание от собственной форсунки. Это сложно и может быть дорого. Чаще используется одноточечный впрыск, когда один инжектор питает все цилиндры, или один инжектор на каждые два цилиндра.

Форсунки

Форсунки, через которые распыляется топливо, ввинчиваются форсункой вперед либо во впускной коллектор, либо в головку блока цилиндров и расположены под углом, так что струя топлива направляется к впускному отверстию. клапан .

Форсунки бывают одного из двух типов, в зависимости от системы впрыска. Первая система использует непрерывный впрыск где топливо впрыскивается во впускное отверстие все время работы двигателя. Форсунка просто действует как распылительная форсунка, разбивая топливо на мелкие брызги — на самом деле он не контролирует поток топлива. Количество распыляемого топлива увеличивается или уменьшается с помощью механического или электрического блока управления — другими словами, это похоже на включение и выключение крана.

Другая популярная система — это впрыск по времени (импульсный впрыск) где топливо доставляется партиями, чтобы совпасть с индукция Инсульт цилиндра. Как и в случае непрерывного впрыска, впрыском по времени также можно управлять механически или электронно.

Самые ранние системы управлялись механически. Их часто называют впрыском бензина (сокращенно PI), и поток топлива регулируется механическим регулятором. Недостатки этих систем заключаются в том, что они сложны с механической точки зрения и плохо реагируют на нажатие педали газа.

Механические системы в настоящее время в значительной степени вытеснены электронный впрыск топлива (сокращенно EFi). Это происходит благодаря повышению надежности и снижению затрат на электронные системы управления.

Типы топливных форсунок

Форсунка механическая

Могут быть установлены два основных типа инжектора, в зависимости от того, управляется ли система впрыска механически или электронно.В механической системе инжектор подпружиненный в закрытое положение и открывается давлением топлива.

Электронный инжектор

Форсунка в электронной системе также удерживается закрытой с помощью пружины, но открывается с помощью электромагнит встроен в корпус инжектора. В электронный блок управления определяет, как долго инжектор остается открытым.

Механический впрыск топлива

Lucas с механической системой впрыска топлива

В системе Lucas топливо из бака под высоким давлением перекачивается в топливный аккумулятор.Оттуда он попадает в распределитель топлива, который посылает порцию топлива в каждую форсунку, откуда оно попадает во впускное отверстие. Воздушный поток регулируется заслонкой, которая открывается при нажатии на педаль акселератора. По мере увеличения потока воздуха распределитель топлива автоматически увеличивает поток топлива к форсункам, чтобы поддерживать правильную сбалансированность топливно-воздушной смеси. Для холодного запуска используется воздушная заслонка на приборной панели или, на более поздних моделях, микропроцессорный блок управления приводит в действие специальный инжектор холодного запуска, который впрыскивает дополнительное топливо для создания более богатой смеси.Как только двигатель прогреется до определенной температуры, термовыключатель автоматически отключает форсунку холодного пуска.

Механический впрыск топлива использовался в 1960-х и 1970-х годах многими производителями на своих высокопроизводительных спортивных автомобилях и спортивных седанах. Одним типом, установленным на многих британских автомобилях, включая Triumph TR6 PI и 2500 PI, была система Lucas PI, которая представляет собой систему с таймером.

А высокого давления электрический топливный насос установлен рядом с топливным баком, нагнетает топливо под давлением 100 фунтов на квадратный дюйм до уровня топлива аккумулятор .Это в основном краткосрочный резервуар который поддерживает постоянное давление подачи топлива, а также сглаживает импульсы топлива, поступающего из насоса.

От аккумулятор , топливо проходит через бумагу элемент фильтр а затем подается в блок управления дозатором топлива, также известный как распределитель топлива . Этот агрегат приводится в движение распредвал и его задача, как следует из названия, состоит в том, чтобы распределить топливо по каждому цилиндру в нужное время и в нужных количествах.

Количество впрыскиваемого топлива регулируется заслонкой, расположенной в воздухозаборнике двигателя.Заслонка находится под блоком управления и поднимается и опускается в ответ на воздушный поток — когда вы открываете дроссельную заслонку, «всасывание» из цилиндров увеличивает воздушный поток, и заслонка поднимается. Это изменяет положение челночного клапана в блоке управления дозированием, чтобы позволить большему количеству топлива впрыскиваться в цилиндры.

От дозатора топливо по очереди подается к каждой из форсунок. Затем топливо впрыскивается во впускное отверстие в головке блока цилиндров. Каждый инжектор содержит подпружиненный клапан, который удерживается закрытым за счет давления пружины.Клапан открывается только при впрыскивании топлива.

При холодном запуске вы не можете просто перекрыть часть воздушного потока, чтобы обогатить топливно-воздушную смесь, как в случае с карбюратором. Вместо этого ручное управление на приборной панели (напоминающее ручку воздушной заслонки) или, на более поздних моделях, data-term-id = «1915»> микропроцессор

ПРЯМОЙ ВПРЫСК VS ПОРТОВЫЙ ВПРЫСК Восстановленные двигатели |

Наши специалисты в Tristar не только знают, как заново производить двигатели, но и любят писать!

Подпишитесь на нас в Instagram и Facebook для участия в рекламных акциях и демонстрациях клиентов! Отправьте свои TRISTAR RIDES!

Теперь до сентября получайте бесплатную футболку и шляпу при каждом онлайн-заказе двигателя!

Вот наша собственная статья Джеймса Костюховски о сравнении прямого впрыска и портового впрыска!

Джеймс Костюховски:

Джеймс Костюховски — старший менеджер по работе с клиентами в Tri Star Engines.Джим проработал в компании более десяти лет и даже раньше работал у одного из наших крупнейших конкурентов. Его территория продаж простиралась от всего Висконсина до некоторых частей Верхнего полуострова Мичигана. В свободное время он с удовольствием посещает автосалоны со своим Grabber Orange Ford Mustang и Cadillac CTS, собирает винтажные знаки и бензоколонки и работает с инвестициями. Джим — кладезь автомобильных знаний, наполненных позитивной энергией, и если вы работаете в магазине автомобильных запчастей или в ремонтной мастерской в ​​Центральном Висконсине, вы можете просто обнаружить, что он стучится в вашу дверь.Свяжитесь с Джимом по электронной почте [email protected]!

ПРЯМОЙ ВПРЫСК

В модели

Direct Injection и Port Injection используются электрические форсунки с компьютерным управлением для впрыска топлива в двигатель. Разница в том, куда распыляют топливо.

Прямой впрыск имеет форсунки, установленные в головке блока цилиндров, и форсунки распыляют топливо непосредственно в цилиндр двигателя . Затем он смешивается с воздухом. Только воздух проходит через направляющие впускного коллектора и впускные клапаны с прямым впрыском.

Есть преимущества и недостатки обеих систем. Преимущества прямого впрыска : лучшая экономия топлива, меньше выбросов и лучшая производительность. Повышение экономии топлива может достигать 15%, что позволяет расходовать гораздо меньше топлива.

Он подает топливо более точно, чтобы улучшить сгорание с большей мощностью, сохраняя при этом лучшую экономию топлива и снижая выбросы. Возможно снижение выбросов на 25% при холодном пуске.

Прямой впрыск дозирует количество топлива точно в каждый цилиндр для оптимальной производительности, и оно распыляется под очень высоким давлением, до 15 000 фунтов на квадратный дюйм на некоторых автомобилях , поэтому топливо хорошо распыляется и воспламеняется почти мгновенно.

Большим недостатком прямого впрыска является скопление нагара на задней стороне впускных клапанов. Это может вызвать компьютерный код и привести к отказу двигателя или сбою зажигания.

Другой недостаток прямого впрыска — стоимость. Наконечники форсунок устанавливаются прямо в камеру сгорания, поэтому материалы форсунок должны быть очень хорошего качества.

Высокое давление необходимо для впрыска топлива непосредственно в цилиндры, что означает необходимость в дорогостоящих топливных насосах высокого давления.Обычно они приводятся в движение механическим способом от двигателя, что усложняет работу.

Основная причина, по которой мы видим на рынке автомобили с прямым впрыском, — это ужесточение стандартов экономии топлива.

ПОРТ ВПРЫСКА

Портовый впрыск распыляет топливо во впускные каналы, где оно смешивается с поступающим воздухом.

Портовые системы впрыска намного дешевле в производстве. Форсунки не подвергаются воздействию высокой температуры и давления камеры сгорания, и им не нужно выдерживать высокое давление топлива.

Системы впрыска с портом

обычно работают в диапазоне от 30 до 60 фунтов на квадратный дюйм, что значительно ниже, чем у систем прямого впрыска. Вспомогательные системы, такие как топливные насосы, также дешевле, потому что давление топлива ниже.

Портовые системы впрыска распыляют топливо на заднюю часть впускного клапана, и топливо должно ждать, пока клапан не откроется. Топливо, распыленное на заднюю часть впускных клапанов, также очищает клапаны.

Форсунки часто устанавливаются на направляющих впускного коллектора, и топливо остается в направляющих, пока не откроется впускной клапан и смесь не будет втягиваться в цилиндр двигателя.

ЗАКЛЮЧЕНИЕ

Я вижу время, когда системы впрыска портов будут полностью заменены прямым впрыском. Портовый впрыск, хотя и намного лучше, чем старые карбюраторы, системы дроссельной заслонки, просто не могут сравниться с мощностью и экономичностью, обеспечиваемыми прямым впрыском.

Некоторые производители, такие как Ford, Lexus, Toyota и Audi, переходят на комбинацию порта и прямого впрыска, называемую дуэльной подачей топлива . Последний Ford Mustang и Shelby GT350 имеет комбинацию порта и прямого впрыска.

По мере увеличения затрат на топливо разница в стоимости производства между системами с прямым впрыском и системами прямого впрыска будет уменьшаться. На данный момент обе системы доступны на новых автомобилях, в зависимости от выбранной вами модели.

Ознакомьтесь с нашим двигателем с прямым впрыском здесь!

Потенциал улучшения выбросов, шума и экономии топлива в двигателях с низким CR

Образец цитирования: Mendez, S. and Thirouard, B., «Использование нескольких стратегий впрыска при сжигании дизельного топлива: потенциал для улучшения выбросов, шума и компромисса в экономии топлива в двигателях с низким CR», SAE Int. J. Fuels Lubr. 1 (1): 662-674, 2009 г., https://doi.org/10.4271/2008-01-1329.
Загрузить Citation

Автор (ы): Сильвен Мендес, Бенуа Тируар

Филиал: IFP

Страниц: 13

Событие: Всемирный конгресс и выставка SAE

ISSN: 1946-3952

e-ISSN: 1946–3960

Также в: Процессы горения с воспламенением от сжатия, 2008-SP-2185, SAE International Journal of Fuels and Lubricants-V117-4EJ, SAE International Journal of Fuels and Lubricants-V117-4

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере уже в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Прямой впрыск топлива: краткая история

Концепция прямого впрыска топлива существует с 1925 года, когда ее изобрел шведский инженер Йонас Хессельман.Во время Второй мировой войны некоторые истребители оснащались системой непосредственного впрыска топлива для предотвращения сваливания во время высокоскоростных маневров. После Второй мировой войны автомобильные компании обнаружили, что механический впрыск топлива в цилиндр был практически невозможен при использовании этой технологии в то время. Несмотря на эти неудачи, кажется, что ошибки были устранены, и концепция предложила множество улучшений для современных операций.

Историческая перспектива

Система впрыска через корпус дроссельной заслонки была одной из первых отечественных систем впрыска топлива, которые вышли на рынок и легко заменили карбюратор в двигателях существующих конструкций.TBI требовался простой компьютер, способный управлять несколькими форсунками, распыляющими воздух, поступающий во впускной коллектор. Датчик положения дроссельной заслонки (TPS), датчик температуры охлаждающей жидкости (CTS), датчик абсолютного давления в коллекторе (MAP) и датчик кислорода (O2) были основными датчиками, необходимыми для точного контроля топлива в двигателе. Топливо подавалось с помощью топливного насоса в баке. Хотя TBI был чрезвычайно простым, капли фурела накапливались во впускном канале, что приводило к «влажному потоку», который создавал неравномерное распределение по цилиндрам.Чтобы уменьшить влажный поток, автопроизводители ввели многопортовый впрыск. Многопортовые системы впрыска смогли синхронизировать впрыск топлива при открытии впускного клапана. Распределение топлива между цилиндрами оставалось неравномерным.

Прямой впрыск топлива

Поскольку стандарты выбросов продолжали ужесточаться, системы прямого впрыска бензина (GDFI) стали более доступными. Системы GDFI имеют ту же базовую настройку, что и обычные системы MPI. Большинство GDFI используют насос в баке для подачи топлива в насос высокого давления.PCM контролирует насос высокого давления и может изменять количество топлива, поступающего в насос. Большинство насосов создают давление топлива около 2000 фунтов на квадратный дюйм, чтобы преодолеть давления, возникающие при сгорании и сжатии, и впрыснуть относительно большой объем топлива за короткий промежуток времени. Для систем GDFI требуются пьезоэлектрические топливные форсунки, которые могут открывать клапаны игл форсунок при давлении более 2000 фунтов на квадратный дюйм.

Преимущества прямого впрыска бензина

Самыми непосредственными преимуществами впрыска бензина непосредственно в цилиндр двигателя являются повышенная экономия топлива и мощность.Есть много вещей, которые могут повлиять на использование системы прямого впрыска бензина, поэтому в этой статье основное внимание будет уделено основам. Двигатель GDFI может работать в стехиометрическом режиме (соотношение воздух / топливо 14,7: 1 по массе теоретически производит только углекислый газ (CO2) и воду (h3O)) на полной мощности (соотношение воздух / топливо от 13: 1 до 14: 1 до достичь максимальной мощности.) и ультра-обедненный (соотношение воздух / топливо варьируется в зависимости от транспортного средства и может превышать 50: 1) режимах. Стратегия работы с распределенным впрыском топлива (FSI) также может повысить экономию топлива.Стратифицированное соотношение воздух / топливо может быть создано путем впрыска бедной топливно-воздушной смеси в цикл рабочего такта сразу после того, как происходит начальное «богатое» сгорание. Многослойная система имеет ограниченное применение из-за множества проблем, таких как повреждение выпускного клапана. Прямой впрыск бензина также позволяет инженерам фактически запустить двигатель, впрыскивая топливо в цилиндр, находящийся в состоянии покоя, во время рабочего такта и зажигая его свечой зажигания. Это повторяется во всех цилиндрах в последовательности зажигания, пока не будет достигнута частота вращения холостого хода.Это позволяет выключать двигатель на светофоре для экономии топлива и быстро запускать его снова. Наконец, скрытая теплота испаряет топливо и фактически охлаждает внутреннюю часть цилиндра, что увеличивает степень сжатия.

Текущие проблемы прямого впрыска бензина

Большинство систем прямого впрыска бензина можно диагностировать с помощью диагностического прибора. Самая последняя проблема — скопление нагара на уплотнениях впускных клапанов, вызывающее пропуски зажигания в цилиндрах. Большая часть накопления углерода может быть связана с масляным туманом из системы ПВХ и EGR.Наконец, механические топливные насосы высокого давления, по-видимому, являются ранней точкой отказа современных серийных автомобилей. Помните, что насос низкого давления должен работать правильно, чтобы насос высокого давления работал. Все специалисты по запчастям также должны знать, что многие производители могут потребовать полной замены топливной рампы при замене одной топливной форсунки из соображений безопасности. Как и в случае с любой новой технологией, информационная система профессионального уровня жизненно важна для успешной диагностики исходной проблемы и завершения успешного ремонта.

Комплексное исследование двухтопливного сжигания природного газа и дизельного топлива с двойным прямым впрыском для легковых автомобилей

В этом разделе представлены результаты с упором на изменение оборудования. Все вариации проводились на одном и том же базовом двигателе, чтобы обеспечить наилучшую сопоставимость результатов. На протяжении всей измерительной кампании использовался ПГ с содержанием метана более 95 об.%.

Сравнение оконного впрыска топлива (PFI) ПГ и двойного прямого впрыска (DDI)

Подобные результаты ранее были опубликованы авторами в [16].Однако, чтобы понять концепцию, преимущества и недостатки DDI, приведено сравнение с PFI для двух точек нагрузки. Обе концепции сгорания были реализованы на одном базовом двигателе с различной обработкой головок цилиндров. Геометрия камеры сгорания, конструкция порта, геометрия поршня и степень сжатия были идентичны.

Указанные результаты представляют собой оптимум, достигаемый каждой концепцией. Это означает, что параметры оборудования (\ (\ varepsilon \), геометрия поршня, конструкция порта и т. Д.) идентичны, параметры применения (время впрыска, давление наддува, положение вихревой заслонки, EGR и т. д.) различны и оптимизированы для каждого процесса сгорания. Только доля энергии ПГ \ (x_ \ mathrm {NG} \) идентична. Значения всех параметров приложения указаны в Таблице 4 в Приложении. Критерий оптимизации — минимум несгоревших видов \ (\ mathrm {\ Delta} \ zeta \) IC и максимальная термическая эффективность тормозов. Кроме того, при работе на обедненной смеси выхлопной двигатель NO x Выбросы должны быть на том же низком уровне, что и NO x выбросов базового дизельного двигателя.

На рис. 12 представлены результаты для точки нагрузки 3/1500. В соответствии со стратегией работы, представленной на рис. 8, двигатель DDI работает в стратифицированном режиме. Соответственно, для SOI NG установлено значение 70 ° CA. В обоих случаях \ (x_ \ mathrm {NG} \) = 80% и используется большое количество EGR (более подробную информацию см. В Табл. 4). Преимущество DDI очевидно, поскольку несгоревшие виды \ (\ mathrm {\ Delta} \ zeta \) IC уменьшены на две трети, а указанный КПД увеличен на 6% \ (_ \ text {Pt.} \). Уменьшение \ (\ mathrm {\ Delta} \ zeta \) IC является результатом концентрации природного газа в корпусе поршня. Местное соотношение воздух-топливный эквивалент внутри чаши смещено от верхнего предела воспламеняемости в сторону стехиометрии. Это способствует полному сгоранию. Однако увеличение указанной эффективности не объясняется только уменьшением количества несгоревших частиц. Различные газовые свойства заряда цилиндра также повышают эффективность. В случае DDI может быть реализовано более высокое разбавление заряда (\ (\ lambda \) global и количество EGR выше, см. Таблицу 4 для получения дополнительной информации), и NG впрыскивается позже в такте сжатия.Эти факторы также положительно влияют на указанную эффективность.

Рис.12

Сравнение двухтопливного сжигания с природным газом PFI и DDI в точке нагрузки 3/1500

Иная ситуация в точке нагрузки 11/2000. В соответствии со стратегией работы, представленной на рис. 8, двигатель DDI работает однородно и стехиометрически в этой точке нагрузки. Ввод природного газа установлен на SOI NG = 300 ° CA. Также концепция PFI работает стехиометрически.Смешивание воздух-топливо лучше с PFI, так как ПГ вводится уже перед впускными клапанами, и у него больше времени для смешивания. Кроме того, в концепции PFI дизельный инжектор расположен по центру и имеет форсунку с 8 отверстиями, что выгодно по сравнению с эксцентриковой установкой и форсункой с 6 отверстиями в концепции DDI. Эти различия наблюдаются в данных измерений, показанных на рис. 13. PFI обеспечивает несколько меньшее количество несгоревших частиц, и сгорание происходит значительно быстрее, как показывают продолжительность сгорания и скорость тепловыделения (ROHR).

Рис.13

Сравнение двухтопливного сжигания с природным газом PFI и DDI в точке нагрузки 11/2000

Исследование эффектов движения заряда и геометрии поршня

Целью исследований является анализ влияния различных моделей движения заряда на процесс горения DDI. В принципе, движение заряда можно разделить на завихрение, кувырок и сжатие. Движение заряда существенно влияет на турбулентность в камере сгорания.Как уже показано на фиг. 9 и 10 были разработаны две разные геометрии впускных каналов и три формы поршней. На рис. 14 показаны исследованные комбинации геометрии впускного канала и формы поршня, а также результирующие модели движения заряда.

Рис.14

Исследованные модели движения заряда (конструкция впускного отверстия / форма чаши поршня)

Помимо турбулентности на смесеобразование влияет движение заряда. Есть компромисс из-за разных операционных стратегий.Увеличение турбулентности улучшает гомогенизацию топливовоздушной смеси в камере сгорания. Это желательно в стехиометрическом режиме для достижения полного сгорания. В процессе послойной обработки лучшая гомогенизация приводит к ухудшению качества расслоенной смеси. В результате увеличиваются выбросы несгоревших углеводородов. \ circ} \ mathrm {CA} \)).

Рис.15

Сравнение различных моделей движения зарядов в точке нагружения 3/1500

Рис.16

Сравнение различных моделей движения зарядов в точке нагрузки 11/2000

НЕТ x Уровень выбросов находится на одинаковом низком уровне для всех вариантов. Доля энергии ПГ \ (x_ \ mathrm {NG} \) составляет 80% для всех тестов (более подробную информацию о параметрах приложения см. В Таблице 5).

Очевидно, что несгоревшие виды \ (\ mathrm {\ Delta} \ zeta \) IC двух конфигураций с отдельной чашей поршня (плоская чаша и \ (\ mathrm {\ omega} \) — чаша) значительно ниже, чем у конфигурации с чашей линзы. Из-за позднего прямого впрыска ПГ в камеру сгорания отдельный корпус поршня улавливает впрыскиваемый природный газ. В то время как открытая геометрия линзы-чаши распределяет введенный природный газ по всей камере сгорания.В результате расслоение не достигается. Помимо увеличения количества несгоревших видов \ (\ mathrm {\ Delta} \ zeta \) IC это приводит к увеличению продолжительности горения и ухудшению стабильности горения, характеризуемой коэффициентом вариации COV \ (_ \ text {IMEP} \). Из-за низкой точки нагрузки трудно количественно оценить влияние различных моделей движения заряда. Тем не менее, конфигурация впускных каналов с перекачкой и поршня с плоской чашей имеет преимущество в указанной эффективности в этой точке нагрузки.

Рис.17

Сравнение измерений при степени сжатия \ (\ varepsilon \) = 14,5 и \ (\ varepsilon \) = 16,5 в точке нагрузки 3/1500

Рис. 18

Сравнение измерений при степени сжатия \ (\ varepsilon \) = 14,5 и \ (\ varepsilon \) = 16,5 в точке нагружения 11/2000

В точке нагрузки 11/2000, которая была оптимизирована для стехиометрической работы, влияние различных движений заряда на процесс горения DDI более заметно.{\ circ} \) CA. Более того, в этой точке нагрузки не использовалась система рециркуляции отработавших газов. Остальные параметры приложения указаны в таблице 6. На рисунке 16 показаны результаты экспериментов и моделирования. Уровень турбулентности в камере сгорания, на который в первую очередь влияет движение заряда, может быть количественно определен с помощью турбулентной кинетической энергии (TKE). Результаты моделирования CFD холодного потока показывают, что падающий поток создает более высокую абсолютную турбулентность. Тем не менее, TKE в вариантах с переворачиванием уменьшается быстрее в направлении ВМТ.Уровень турбулентности комбинированной конструкции качающегося впускного канала и поршня линзы с чашей является наименьшим после ВМТ. Корреляции могут быть определены путем сравнения этих результатов моделирования с экспериментальными данными. Как видно из ROHR, повышенная турбулентность из-за падающего потока приводит к более крутому подъему вначале. Комбинация перекачивающих каналов с поршнем линзы с чашей дает преимущества, в частности, во время первой трети сгорания. Напротив, тепловыделение закрученного потока в этот период является самым медленным.Эти результаты могут быть получены из моделирования, анализирующего TKE — более высокий уровень турбулентности для падающего потока приводит к быстрому сгоранию вначале. Однако в конце горения соотношение меняется на обратное. Из-за продолжительной турбулентности вихревого потока сгорание происходит быстрее в последней трети по сравнению с качающимися конфигурациями. В результате прекращение горения для комбинации завихрения и \ (\ mathrm {\ omega} \) — чаши достигается раньше. Хорошим компромиссом является сочетание качающегося потока с поршнем с плоской чашей.Взаимодействие между опрокидыванием и сжатым потоком показывает хорошие результаты как в моделировании, так и в эксперименте.

Помимо горения, турбулентность также оказывает большое влияние на образование смеси. Более высокая турбулентность и открытая поршневая форма чаши линзы приводят к улучшенному перемешиванию непосредственно впрыскиваемого ПГ в камеру сгорания. В результате сокращаются выбросы несгоревших углеводородов. Варианты с глубокой чашей поршня (\ (\ mathrm {\ omega}) и плоской чашей) отрицательно влияют на приготовление смеси.Несгоревшие виды \ (\ mathrm {\ Delta} \ zeta \) IC \ (\ mathrm {\ omega} \) и плоской чаши, таким образом, выше, чем у линзы-чаши. Более того, лучшая гомогенизация с линзой-чашей положительно влияет на стабильность горения COV \ (_ \ text {IMEP} \) по сравнению с другими конфигурациями. Благодаря более быстрому сгоранию вначале и лучшему смесеобразованию комбинация барабана / линзы-чаши имеет преимущества с точки зрения указанной эффективности.Базовая конфигурация (завихрение / \ (\ mathrm {\ omega} \) — чаша) не может компенсировать недостатки неполной гомогенизации за счет более быстрого сжигания к концу процесса горения. В заключение, существуют разные требования к движению заряда. Совмещение всех желаемых свойств в одной конфигурации — нереальная возможность. В первую очередь, чаша поршня необходима для поддержания расслоенного заряда при работе с малой нагрузкой. Поршень в форме линзы отрицательно сказывается на этом обстоятельстве.Однако комбинация барабана и чаши линзы улучшает гомогенизацию смеси во время стехиометрической операции. Хорошим компромиссом является конструкция качающегося порта с поршнем с плоской чашей.

Изменение степени сжатия и детонация

При сжигании смеси воздух-ПГ преобладает режим горения с предварительной смесью. Таким образом, также присутствует опасность детонации. Это особенно верно, если степень сжатия \ (\ varepsilon \) высока, как в случае представленной концепции DDI (\ ​​(\ varepsilon \) = 16.5). Однако изменение \ (\ varepsilon \) было выполнено для определения ограничений процесса горения, а не из-за чрезмерной детонации при высоких нагрузках. При \ (\ varepsilon \) = 16,5 при n = 2000 об / мин и MFB50 = 14 ° CA начало детонации обнаруживается при BMEP = 23 бар.

Рис.19

Сравнение концепции DDI с обычными процессами горения в точке нагрузки 3/1500

Эта максимальная нагрузка достигается, однако, с концепцией PFI, которая имеет четырехклапанную головку блока цилиндров.Детонация начинается раньше с концепцией DDI, которая имеет только один выпускной клапан. Предполагается, что при высоких нагрузках одиночный выпускной клапан нагревается, и в цилиндре потенциально может задерживаться больше остаточного газа. Оба эффекта вызывают более ранний стук. Таким образом, максимальная нагрузка исследуемого двигателя DDI не является репрезентативной для процесса сгорания. Кроме того, следует отметить, что детонация сильно зависит от используемого топлива. ПГ с содержанием метана более 95 об.% Использовался на протяжении всей измерительной кампании.При исследовании предела детонации содержание метана составило 98,4 об.%.

Затем сравниваются данные измерений с \ (\ varepsilon \) = 16,5 и 14,5 для двух точек нагрузки. Уменьшение степени сжатия было достигнуто за счет уменьшения длины шатуна на 1 мм и увеличения объема барабана. Была сохранена общая \ (\ omega \) — форма чаши, а высота сжатия поршня также осталась неизменной. Опять же, отображаемые результаты измерений представляют собой оптимум с точки зрения эффективности и несгоревших частиц, который достигается при каждой настройке.Кроме того, без двигателя NO x Уровень выбросов соответствует низкому уровню базового дизельного двигателя при работе на обедненной и многослойной смеси. Связанные параметры применения изображенных данных измерений указаны в таблице 7. На рисунке 17 показаны результаты для точки нагрузки 3/1500. Вариант с \ (\ varepsilon \) = 14,5 имеет худшие характеристики по всем параметрам. Пониженное сжатие приводит к снижению давления и температуры сжатия, что отрицательно сказывается на условиях воспламенения пилотной струи дизельного двигателя.Количество впрыска должно быть увеличено, а время впрыска должно быть увеличено, чтобы компенсировать плохие условия зажигания. Более высокое количество дизельного топлива отражается в низкой доле энергии ПГ \ (x_ \ mathrm {NG} \), составляющей всего 65%. Увеличение впрыска дизельного топлива приводит к значительному увеличению задержки зажигания, поскольку условия зажигания становятся еще хуже. Кроме того, из-за более низкого давления и температуры в ВМТ все сгорание происходит при более низких уровнях давления и температуры, что в целом отрицательно влияет на скорость сгорания.Меньшая доля энергии ПГ \ (x_ \ mathrm {NG} \) приводит к очень бедной смеси воздух-ПГ, состоящей из \ (\ lambda \) NG = 2,44, что приводит к сильному увеличению количества несгоревших частиц, даже если заряд расслоен. Наконец, уменьшение \ (\ varepsilon \) также снижает термодинамический КПД двигателя. Согласно Карно, эффективность снижается, если тепловыделение происходит при более низких уровнях температуры [15]. Все упомянутые аспекты накапливаются в штрафной показанной эффективности почти в 5% \ (_ \ text {Pt.} \).

На рисунке 18 изображена точка нагрузки 11/2000. Тенденции те же, но эффекты смягчены по сравнению с результатами при BMEP = 3 бар на рис. 17. Причина в том, что хотя двигатель DDI работает стехиометрически при BMEP = 11 бар и обедненный при BMEP = 3 бар, масса цилиндра увеличивается на 20% соотв. 30% из-за большей нагрузки. Наряду с большей массой давление во впускном коллекторе увеличивается на 200 мбар соответственно. 280 мбар. Таким образом, давление сжатия и температура в ВМТ выше, и эффекты, описанные выше, смягчаются.Ухудшение указанной эффективности из-за более низкой степени сжатия снижается до 2% \ (_ \ text {Pt.} \).

В заключение, изменение степени сжатия указывает на то, что высокая степень сжатия, аналогичная обычным дизельным двигателям, жизненно важна для представленной концепции DDI. В частности, при работе с низкой нагрузкой важно обеспечить хорошие условия зажигания для пилотного распылителя дизельного топлива. Естественно, высокий уровень \ (\ varepsilon \) способствует детонации, поэтому крайне важно использовать ПГ с высокой долей метана.

Сравнение концепции DDI с традиционными процессами сгорания

Наконец, результаты концепции DDI сравниваются с обычным дизельным и бензиновым двигателем в двух точках нагрузки. Для этого сравнения были выбраны дизельный двигатель, который также служил базовым двигателем для реализации концепции DDI, и современный бензиновый двигатель. Бензиновый двигатель также представляет собой 4-цилиндровый двигатель с турбонаддувом объемом 2 л. Он оснащен непосредственным впрыском бензина (GDI), регулируемым клапаном и степенью сжатия \ (\ varepsilon \) = 10.Для этого сравнения выбрана стандартная конфигурация концепции DDI. Он состоит из поршня с \ (\ omega \) — чашей, степенью сжатия 16,5 и вихревой конструкцией впускных каналов.

Результаты измерения концепции DDI представляют собой оптимум, достигнутый с точки зрения несгоревших частиц \ (\ mathrm {\ Delta} \ zeta \) IC и тепловой КПД тормоза. Соответствующие параметры приложения указаны в таблице 4 в столбце DDI .

Рис.20

Связанные показывающие данные трех процессов горения в точке нагрузки 3/1500

Рис.21

Сравнение концепции DDI с обычными процессами горения в точке нагрузки 11/2000

На рисунке 19 представлено сравнение в точке нагрузки 3/1500. Несмотря на небольшую нагрузку, двигатель DDI достигает почти того же уровня несгоревших компонентов, что и бензиновый двигатель. Дизельный двигатель почти не выделяет несгоревшие частицы из-за сгорания без предварительного смешивания.Указанный КПД двигателя DDI выше КПД обычного дизельного двигателя в этой точке нагрузки, несмотря на более высокое содержание несгоревших частиц. Причина заключается в более быстром и раннем сгорании, что подтверждается данными на рис. 20.

Доля энергии ПГ \ (x_ \ mathrm {NG} \) составляет 79% в этой точке нагрузки. При равных тепловых КПД тормозов возможное снижение CO 2 составляет 20%. Однако достигается еще большее снижение CO 2 , поскольку термический КПД тормозов концепции DDI выше по сравнению с бензиновыми и дизельными двигателями.По сравнению с дизельным двигателем выбросы CO 2 снижаются на 22%, а по сравнению с бензиновым двигателем — даже на 29%. Выбросы CO 2 рассчитаны на основе массы впрыснутого топлива при условии полной конверсии.

НЕТ x Выбросы двигателя DDI поддерживаются на том же низком уровне, что и у дизельного двигателя, потому что оба двигателя имеют обедненный выхлопной газ в этой рабочей точке. Таким образом, выполнимость NO x должна быть обеспечена доочистка по существующей и проверенной технологии.НЕТ x Выбросы бензинового двигателя на одну величину выше из-за стехиометрического режима. Редукция NO x реализуется трехкомпонентным катализатором в случае бензинового двигателя.

Также наблюдается большая разница в температуре выхлопных газов (EGT). Бензиновый двигатель достигает температуры EGT 430 ° C из-за стехиометрического режима работы и сравнительно низкой степени сжатия. Концепция DDI достигает только 250 ° C в этой точке нагрузки.Низкая температура делает последующую обработку несгоревших частиц очень сложной задачей, поскольку выбросы углеводородов состоят в основном из CH 4 , который является особенно стабильной молекулой. Для окисления CH 4 в катализаторе требуются высокие температуры. Проблема окисления CH 4 более подробно рассматривается в разд. 7.5.

На рисунке 20 показаны соответствующие данные индикации трех концепций двигателя. Более низкая степень сжатия бензинового двигателя хорошо видна при сравнении кривых давления в цилиндрах.ROHR бензина и двигателя DDI почти симметричны. ROHR дизельного двигателя имеет типичную асимметричную форму с двумя пиками, соответствующими предварительному впрыску и основному впрыску. Это указывает на то, что при двухтопливном сжигании преобладает режим горения с предварительным смешиванием.

На рисунке 21 показаны результаты в точке нагрузки 11/2000. И снова данные процесса сжигания DDI представляют оптимизированную операцию, а соответствующие параметры приложения указаны в таблице 4.В соответствии со стратегией работы, представленной на рис. 8, двигатель DDI работает стехиометрически. Доля энергии ПГ \ (x_ \ mathrm {NG} \) составляет 94% в этой точке нагрузки. Несгоревшие компоненты двигателя DDI находятся ниже уровня бензинового двигателя. Это показывает, что при высоких нагрузках сгорание DDI работает хорошо. В соответствии с этим указанный КПД двигателя DDI выше на 2% \ (_ \ text {Pt.} \). Более высокий КПД является результатом более высокой степени сжатия, меньшего количества несгоревших частиц и более быстрого сгорания.Однако дизельный двигатель превосходит двигатель DDI еще на 2% \ (_ \ text {Pt.} \) По указанной эффективности. Избыток является результатом почти полного сгорания, меньших потерь тепла через стенки и полезных свойств газа за счет обедненного сгорания.

При условии равной тепловой эффективности тормозов снижение CO 2 на 24% может быть достигнуто для данной доли энергии ПГ \ (x_ \ mathrm {NG} \) 94%. Учитывая разницу в эффективности, выбросы CO 2 снижаются на 26% по сравнению с бензиновым двигателем и на 20% по сравнению с дизельным двигателем.

Уровень НО x Уровень выбросов сопоставим с выбросами бензинового двигателя, так как двигатель DDI также работает стехиометрически. EGT двигателя DDI на 200 ° C выше, чем у дизельного двигателя, однако он все еще на 120 ° C ниже, чем у бензинового двигателя. Это смещение происходит в основном из-за разной степени сжатия. Тем не менее, этого достаточно для обеспечения окисления выбросов CH 4 в катализаторе.

Рис. 22

Связанные показывающие данные трех процессов горения в точке нагрузки 11/2000

На рисунке 22 показаны соответствующие данные индикации.Отчетливо распознается быстрое сгорание бензина и сгорание DF. Во время такта сжатия давление в цилиндре дизельного двигателя выше по сравнению с двигателем DDI, поскольку масса в цилиндре выше в результате работы на обедненной смеси.

В заключение, сравнение показывает, что с концепцией DDI сокращение CO 2 на 20% возможно на обширных участках рабочей карты по сравнению с дизельными и бензиновыми двигателями. Кроме того, концепция DDI превосходит эффективность бензинового двигателя, а при низких нагрузках — даже эффективность дизельного двигателя.Однако сравнение также показывает, что работа с низкой нагрузкой имеет решающее значение для концепции DDI, поскольку температура выхлопных газов очень низкая, а выхлопные газы обеднены. Это является сложной задачей для доочистки отработавших газов несгоревших частиц, как описано в следующем разделе.

Система нейтрализации выхлопных газов

Экспериментальные исследования по дополнительной обработке выхлопных газов были проведены для получения целостной оценки процесса сгорания DDI. В связи с разными режимами работы к системе нейтрализации выхлопных газов предъявляются различные требования.\ text {3} \)) использовался для базовых исследований. Из-за высокой доли энергии ПГ \ (x_ \ mathrm {NG} \) во время работы пеленгатора выбросы углеводородов в основном состоят из метана. В результате химической стабильности CH 4 для каталитического окисления требуется высокая энергия активации. Таким образом, исследования были сосредоточены на конверсии CH 4 .

На рисунке 23 представлены результаты в точке нагрузки 11/2000. Влияние отношения воздушно-топливной эквивалентности \ (\ lambda \) global на преобразователе CH 4 .В дополнение к степени превращения CH 4 показаны температуры перед катализатором и внутри него. Особенно бросается в глаза сильное влияние отношения воздушно-топливной эквивалентности \ (\ lambda \) global на преобразователе CH 4 . В оптимальном рабочем окне \ (\ lambda \) (\ (0.98 <\ lambda _ \ mathrm {global} <0.99 \)) CH 4 достигаются коэффициенты конверсии выше 98%. Однако преобразование CH 4 в бережливую работу (\ (\ lambda \) global \ (> 1 \)) резко уменьшается.{\ circ} \) В.

Рис.23

Скорость превращения CH 4 и температуры до и в катализаторе в точке нагрузки 11/2000

В дополнение к выбросам газообразных загрязнителей были также оценены выбросы твердых частиц. На рисунке 24 показано количество частиц для концепции DDI по сравнению с базовым дизельным двигателем. Из-за очень низкого количества дизельного топлива количество частиц при сгорании DF значительно ниже. В точке нагрузки 3/1500 выбросы твердых частиц двигателя DDI ниже, чем у дизельного двигателя, на четыре порядка.Даже при стехиометрической работе в точке нагрузки 11/2000, когда \ (\ lambda \) global ниже предела для дизельной сажи, выбросы частиц концепции DDI на два порядка ниже, чем у дизельного двигателя.

Рис.24

Количество частиц для DF и дизельного топлива в точках нагрузки 3/1500 и 11/2000

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *