ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Устройство и принцип действия радиатора охлаждения двигателя


Радиатор охлаждения двигателя — Служит для выполнения очень важной функции. Для поддержания нужной для работы двигателя температуры. При запуске двигателя радиатор, не несет ни какой функции, это способствует быстрому прогреву двигателя. Когда двигатель достигает нужной температуры, термостат подключается в работу и помогает радиатору, чтобы двигатель не перегрелся. Если долгое время двигатель проработал на высоких оборотах, то температура жидкости всё же повышается. То к работе радиатора подключается вентилятор, нагоняя воздушный поток через середину радиатора, чтобы теплообмен был интенсивнее.

Радиатор охлаждения двигателя охлаждает жидкость, поступающую из двигателя и циркулирующую по трубкам. Радиатор состоит из двух баков, верхнего и нижнего, а так же сердцевины и деталей крепления.


В систему охлаждения жидкость заливают через горловину бака которая расположена вверху и закрыта крышкой.

Жидкость которая проходит через сердцевину радиатора, разделяется на множество струек, для обеспечения более интенсивного охлаждения за счет увеличения площади соприкосновения жидкости со стенками трубок радиатора.

Работу системы охлаждения обеспечивает система управления двигателем.
Охлаждающая жидкость в системе имеет принудительную циркуляцию, которую обеспечивает центробежный насос. Потом горячая жидкость идет в радиатор на счет чего и происходит отвод тепла в окружающую среду. Тут цикл заканчивается, а вот охлажденная жидкость заново повторяет цикл.

Учитывая вышесказанное можно сказать что радиатор обеспечивает охлаждение жидкости как теплообменник. Для обеспечения более эффективной работы радиатора, обычно перед двигателем устанавливают специальный вентилятор радиатора. Этот вентилятор начинает работать автоматически с помощью специального термодатчика при повышения доступной температуры рабочего двигателя.

Назначение и устройство системы охлаждения двигателя

Назначение и устройство системы охлаждения двигателя

Система охлаждения предназначенная для охлаждения деталей двигателя, в процессе его работы и поддержания нормального температурного, наиболее выгодного теплового режима работы двигателя. Существуют жидкостное охлаждение, воздушное охлаждение и комбинированное охлаждение.

Перегрев двигателя ухудшает количественное наполнение цилиндра горючей смесью, вызывает разжижение и выгорание масла, в результате чего, могут заклинить поршни в цилиндрах и выплавиться вкладыши подшипников.

Переохлаждение двигателя вызывает уменьшение мощности и экономичности двигателя, на холодных деталях конденсируются пары бензина и в виде капель стекают по зеркалу цилиндра, смывая смазку, увеличиваются потери на трения, возрастает износ деталей и возникает необходимость в частой замене масла. А также происходит неполное сгорание топлива, отчего на стенках камеры сгорания образуется большой слой нагара – возможно зависание клапанов.

Для нормальной работы двигателя температура охлаждающей жидкости должна быть 80-95 градусов.

Тепловой баланс может быть представлен в виде диаграммы.

Рис. Диаграмма теплового баланса двигателя внутреннего сгорания.

На двигателях отечественного производства применяют закрытую принудительную жидкостную систему охлаждения, осуществляемую водяным насосом. Она непосредственно не сообщается с атмосферой, поэтому называется закрытой. В результате давление в системе увеличивается, температура кипения охлаждающей жидкости повышается до 108 – 119 градусов и снижается расход на ее испарение.

Данные системы охлаждения обеспечивают равномерное и эффективное охлаждение, а также производят меньше шума.

Рассмотрим систему охлаждения на примере двигателя марки ЗИЛ

Рис. Схема системы охлаждения двигателя типа ЗИЛ. 1 – радиатор, 2 – компрессор, 3 – водяной насос, 4 – термостат, 5 – кран отопителя, 6 – подводящая трубка, 7 – отводящая трубка, 8 – радиатор отопителя, 9 – датчик указателя температуры воды в системе охлаждения двигателя, 10 – сливной кран рубашки блока цилиндров (в положении «открыто»), 11 – сливной краник радиатора.

Жидкость в рубашке охлаждения двигателя нагревается за счет отвода теплоты от цилиндров, поступает через термостат в радиатор, охлаждается в нем и под действием центробежного насоса (обеспечивает циркуляцию охлаждающей жидкости в системе) возвращается в рубашку двигателя. В народе центробежный насос называют «помпой». Охлаждению жидкости способствует интенсивный обдув радиатора и двигателя потоком воздуха от вентилятора.

Вентилятор усиливает поток воздуха через сердцевину радиатора, служит для улучшения охлаждения жидкости в радиаторе. Вентилятор может иметь различный привод.

механический – постоянное соединение с коленчатым валом двигателя,

гидровлический – гидромуфта. Гидромуфта включает в себя герметический кожух В, заполненный жидкостью.

В кожухе помещаются два сферических сосуда Д и Г, жестко соединенные с ведущим А и ведомым Б валами соответственно.

Рис. Гидромуфта, а – принцип действия; б – устройство, 1 – крышка блока цилиндров, 2 – корпус, 3 – кожух, 4 – валик привода, 5 – шкив, 6 – ступица вентилятора, А – ведущий вал, Б – ведомый вал, В – кожух, Г, Д – сосуды, Т – турбинное колесо, Н – насосное колесо.

Принцип работы гидравлического вентилятора основан на действии центробежной силы жидкости. Если сферический сосуд Д, заполненный жидкостью, вращается с большой скоростью, жидкость попадает во второй сосуд Г, заставляя его вращаться. Потеряв энергию при ударе, жидкость возвращается в сосуд Д, разгоняется в нем, попадает в сосуд Г и процесс повторяется.

электрический – управляемый электродвигатель. Когда температура охлаждающей жидкости достигает 90-95 градусов, клапан датчика открывает масляный канал в корпусе включателя и моторное масло поступает в рабочую полость гидромуфты из главной смазочной системы двигателя.

Вентилятор заключен в установленный на рамке радиатора кожух, что способствует увеличению скорости потока воздуха, проходящего через радиатор.

Радиатор служит для охлаждения воды, поступающей из водяной рубашки двигателя.

Рис. Радиатор а – устройство, б – трубчатая середина, в – пластинчатая середина, 1 – верхний бачок с патрубком, 2 – пароотводная трубка, 3 – заливная горловина с пробкой, 4 – сердцевина, 5 – нижний бачок, 6 – патрубок со сливным краником, 7 – трубки, 8 – поперечные пластины.

Состоит из верхнего 1 и нижнего 5 бачков и сердцевины 4 и деталей крепления. Баки и сердцевина изготовлены из латуни (для улучшения теплопроводности).

Наиболее распространены трубчатые и пластинчатые радиаторы. У трубчатых радиаторов, изображенных на рисунке «б» – сердцевина образована из ряда тонких горизонтальных пластин 8, сквозь которые проходит множество вертикальных латунных трубок, благодаря чему вода, проходя через сердцевину радиатора разбивается на множество мелких струек. Горизонтальные пластины служат дополнительными ребрами жесткости и увеличивают поверхность охлаждения.

Пластинчатые радиаторы состоят из одного ряда плоских латунных трубок, каждая из которых изготовлена из спаянных межу собой по краям гофрированных пластин.

Термостат служит для ускорения прогрева холодного двигателя и обеспечения оптимального температурного режима. Термостат представляет собой клапан, регулирующий количество жидкости проходящей через радиатор.

При запуске двигателя сам двигатель и охлаждающая его жидкость холодные. Для ускорения прогрева двигателя, охлаждающая жидкость движется по кругу, минуя радиатор. Термостат при этом закрыт, по мере нагрева двигателя (до температуры 70-80 градусов), клапан термостата, под действием паров жидкости, заполняющей его цилиндр, открывается и охлаждающая жидкость начинает свое движение по большому кругу, через радиатор.

На современных автомобилях устанавливают двухконтурные системы охлаждения . Данная система включает два независимых контура охлаждения:

– контур охлаждения блока цилиндров;

– контур охлаждения головки блока цилиндров.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Радиатор охлаждения двигателя – устройство, работа, ремонт + видео » АвтоНоватор

Радиатор охлаждения двигателя в машине предназначен для переноса тепла от специальной охлаждающей жидкости в окружающую среду. Происходит это за счет встречной струи воздуха или принудительно с помощью вентилятора. Конструкция радиатора состоит из сердцевины и двух бачков.

Конструкция радиатора охлаждения двигателя – изучаем схему устройства

В процессе изготовления радиаторов используют медь и алюминий. В зависимости от назначения сердцевины они бывают трубчатыми, пластинчатыми и в форме сот. Между ними находятся поперечные полоски латуни, которые придают конструкции больше жесткости и служат для увеличения площади поверхности, способствующей охлаждению. Для создания циркуляции жидкости на двигателе установлена помпа. Все узлы системы охлаждения соединены между собой прорезиненными патрубками.

В качестве жидкости для охлаждения в автомобилях используется тосол или антифриз, которые заливают в расширительный бачок. Одной из его задач является компенсация изменения объема и уровня давления ОЖ при ее нагреве или охлаждении. Для принудительного охлаждения жидкости на автомобилях устанавливаются вентиляторы. Их назначение – создание и увеличение объема воздуха, который проходит через радиатор.

На автомобилях применяется два вида вентиляторов:

  1. С приводом от коленчатого вала двигателя.
  2. Электрические. Их включение происходит при достижении температуры жидкости критической отметки.

Радиатор охлаждения двигателя – принцип работы

Принцип охлаждения жидкости достаточно прост: проходя через блок цилиндров, тосол забирает на себя большую часть тепла, после чего поступает в радиатор системы охлаждения двигателя. Направление движения – с верхнего бачка через соты в нижнюю часть. Сердцевина радиатора является основным участником охлаждения, при движении обдув жидкости воздухом происходит именно через нее, вследствие чего температура тосола несколько понижается.

Для стабильной и экономичной работы двигателя требуется постоянная температура охлаждающей жидкости (диапазон примерно от 80 до 90 °С). С целью ее стабилизации в одном из патрубков устанавливается термостат. Когда температура ниже 80 °С – термостат закрыт и жидкость перемещается по малому кругу, но как только она достигает контрольной отметки, термостат открывается, вследствие чего поток направляется в верхний отсек радиатора, специальный бачок.

На грузовых автомобилях также установлен радиатор охлаждения масла двигателя, благодаря этому горячая смазка не разжижается и не пригорает к раскаленным деталям мотора. Конструкция его практически ничем не отличается (кроме горизонтального расположения сот и меньших размеров).

Ремонт радиатора охлаждения двигателя – скорая помощь своими руками

Обслуживание автомобильной системы охлаждения заключается в периодической диагностике объема жидкости, который визуально оценивают в расширительном бачке. Так как состав, находящийся там, все время нагревается и охлаждается, то постепенно входящая в него вода испаряется, и, естественно, общий объем уменьшается. Основной неисправностью радиатора является загрязнение сот, что приводит к ухудшению циркуляции охлаждающей жидкости, ее нагреву и, как следствие, перегреву двигателя.

Ремонт радиатора охлаждения двигателя может состоять в промывке сердцевины проточной водой. Для этого необходимо снять нижний патрубок и через горловину залить воду. Желательно промывать соты сильной струей воды. Устройство (конструкция) радиатора охлаждения двигателя таково, что в случае сильного засора можно распаять и демонтировать бачки, как верхний, так и нижний, что позволит провести механическую очистку сердцевины.

Иногда случается, что один из бачков или соты дают течь. Когда-то при незначительном протекании опытные водители засыпали в радиатор обильную порцию горчичного порошка, который быстро размокал и затягивал «пробоину». Этим способом можно воспользоваться, если рядом нет СТО и нужно просто доехать домой.

 

 

Оцените статью: Поделитесь с друзьями!

Система охлаждения двигателя внутреннего сгорания автомобиля: виды, устройство, неисправности


Система охлаждения двигателя внутреннего сгорания автомобиля (СО) – это конструктивное решение, которое отводит от двигателя транспортного средства излишки тепла и передаёт их в окружающую среду, а также позволяет двигателю оперативно прогреться. Именно возможность быстро прогреться, достигнув оптимального уровня рабочей температуры, и поддержка этой температуры на заданном уровне — одни из важнейших факторов эффективной работы ДВС. 

Назначение системы охлаждения двигателя — предотвращение повреждений деталей двигателя автомобиля в результате его перегрева и износа, охлаждение отработавших газов, масла в системе смазки.

Виды систем охлаждения двигателя (жидкостная и воздушная)

Системы охлаждения  (СO) ДВС транспортных средств бывают разных видов:
  • Воздушными.
  • Жидкостными (функционирующими на воде, антифризах).
  • Гибридными.
Воздушная СО – это конструкция, которая обеспечивает отвод излишек тепла от цилиндров и стенок камер с помощью принудительного потока воздуха. Принуждение возникает за счет вентиляторов. Они могут быть автономными или объединёнными с маховиком. Воздух может нагнетаться или просасываться. 


 
Наиболее активно воздушные системы охлаждения двигателя устанавливались на авто в шестидесятые годы прошлого века. В том числе, такое решение было популярно у заводов, выпускающих Volkswagen, Citroën, Honda, Porsche. Но со временем у легковых автомобилей двигатели с воздушным охлаждением стало возможно встретить всё реже. Это легко объяснить тем, что большинство легковых авто, появившихся позже, в том числе, современные легковые авто – это, преимущественно, переднеприводные модели с поперечным расположением ДВС. При такой системе трудно организовать эффективную систему воздушного охлаждения.

К тому же, при воздушном охлаждении производители вынуждены существенно увеличивать габариты двигателя, а вместе с ним возрастает и уровень шума.

Но на сельскохозяйственные, коммунальные машины, скутера, мотоблоки такие СО по-прежнему ставят. Правда, даже у тракторов их можно встретить уже очень редко.

Вторая же разновидность СО –  жидкостная система охлаждения двигателя – это система, где есть промежуточный теплоноситель (жидкость – антифриз). Именно антифриз основательно «прорабатывает» толщь стенок блока цилиндров. Роль отводящего агента у большинства СО такого типа при этом опять-таки играет воздух. Поэтому часто системы называют не просто жидкостными, а комбинированными, гибридными. С точки зрения физики, это действительно верно (и более грамотно), но при этом, так как жидкостные системы в чистом виде (без отводящего агента в виде воздуха) сейчас не используются (первые системы были именно непосредственно жидкостными и работали исключительно на воде), в том, что жидкостными и гибридными МО называют на практике одни и те же решения, ничего зазорного нет.  

И современные автомобилисты, и механики жидкостными СО называют, как правило, именно гибридные решения. Те, где задействован и воздух, и антифриз.

Потоки жидкостной СО

Жидкостные системы охлаждения двигателей могут быть с параллельными, последовательными и смешанными потоками.

Параллельные потоки. Антифриз под давлением поступает в блок цилиндров, проходит через отверстия прокладки головки блока и в головку блока. 

Последовательные потоки. Жидкость поступает к задней части блока цилиндра, а затем перетекает в головку блока цилиндров. Здесь она течет вокруг каждого цилиндра и только потом через перекрестные проходы попадает во коллектор впуска.

Смешанные потоки. У некоторых ДВС потоки теплоносителя объединены. Вентиляционные отверстия берут на себя функцию выпуска пара.

Устройство системы охлаждения двигателя


Сначала затронем конструирование устройства системы охлаждения. При конструировании системы охлаждения производители учитывают целый комплекс факторов: 
  • тепловая мощностью ДВС (быстрота выделения тепла),
  • габаритов радиатора, вентилятора и водяной помпы, 
  • давления в СО,
  • конструктивных особенностей термостата.
Если проектируется жидкостная система, учитывается тип охлаждающей жидкости – антифриза: этиленгликолевый (карбоксилатный, лобридный, комбинированный), пропилен-гликолевый. 

Если проектируется воздушная СО, обязательно учитывается температура и влажность окружающего ДВС воздуха.

При конструировании воздушных систем специалисты заинтересованы, в первую очередь, обеспечить подачу воздуха к:

  • перемычкам между гнездами клапанов (самым горячим местам головки цилиндров), если речь касается бензиновых ДВС.
  • форсункам, если в фокусе внимания – дизельные двигатели.

Обязательно учитываются параметры оребрения двигателя. Идеальный вариант – брать в расчет показатели аэродинамического сопротивления оребрения двигателя, но на практике чаще берется всё-таки удельная поверхность оребрения. Учитывать показатели аэродинамического сопротивления, когда речь идёт о достаточно простой и недорогой технике достаточно нерационально. И проще пожертвовать именно этим параметром.

Как устроена система охлаждения двигателя автомобиля, работающего на антифризе?


В зависимости от того, какое охлаждение – воздушное или на антифризе, отличается схема системы охлаждения двигателя.

Итак, общее устройство системы охлаждения двигателя автомобиля, работающего  на антифризе состоит из следующих элементов:

1. «Водяная рубашка».  Полости между двойными стенками двигателя, имеющие сообщение друг с другом. Расположены в зонах присутствия избытка тепла. Фактически это всё пространство вокруг цилиндров ДВС, заполненное охлаждающей жидкостью.

 
 
2. Термостат. Специальный клапан между «рубашкой» ДВС и входным патрубком устройства радиатора. Когда клапан открывается, для охлаждающей жидкости возникают все условия, чтобы она беспрепятственно попадала в радиатор. Излишки жидкости возвращаются в водяную рубашку через обводный канал. В зависимости от конструктивных особенностей СО, модели силового агрегата, компоновки ДВС термостат может иметь разную локацию. Чаще всего термостат расположен в зоне выхода антифриза из головки блока цилиндров.
 

 
3. Радиатор. Устройство, предназначенное непосредственно для отдачи (отвода) тепла в атмосферу и охлаждения жидкости внутри каналов. Представляет собой конструкцию из трубок, спаянных в виде прямоугольника, крепящегося на двух бачках. Изготавливается из металла (меди, алюминия), нескольких металлов (медь + латунь), комбинации металла и пластика. Большинство современных радиаторов – с алюминиевой сердцевиной с бачками из армированного пластика. В этом случае деталь обладает более высокими показателями коррозионной стойкости и теплопроводности. Устройство монтируется в зоне, которая лучше всего обдувается. Идеальный вариант – зона в подкапотном пространстве спереди автомобиля (причем к такому конструкционному решению инженеры нередко прибегают даже, если ДВС имеет заднее расположение). У некоторых автомобилей радиаторы устанавливаются возле боковых стенок авто. Но как правило, в этом случае о обдуве заботится воздухозаборник, а радиаторов – несколько. Такой вариант можно встретить у спорткаров. 

 

Теплоноситель может поступать в радиатор сверху и направляться вниз в основной бочок, а может двигаться от одной стороны устройства к противоположной его стороне (СО с поперечным потоком). На подавляющее большинство современных СО монтируют радиаторы именно с поперечным потоком.

У большинства радиаторов горловина имеет крышку, оснащённую подпружиненным клапаном, предназначенного для герметичного закрытия вентиляционных каналов СО. Это конструктивное решение необходимо для поддержания оптимального рабочего давления. Наиболее распространёнными и внушающими доверие пользователям радиаторами являются устройства торговых марок Behr Hella, DENSO, LUZAR, Stellox, SAT, AVA.

4. Вентилятор – устройство, помогающее усилить поток набегающего воздуха на радиатор. Воздушный поток направлен по направлению к двигателю.  Запускается за счёт муфты (электромагнитной, гидравлической от сигнала датчика при превышении порогового значения температуры охлаждающей жидкости.   На большинстве современных транспортных средств стоят электровентиляторы: один или несколько (один непосредственно для охлаждения, другой – для работы с высокими температурами).  На транспортных средствах с продольным расположением ДВС и задним приводом также можно встретить термостатический вентилятор охлаждения (вентилятор с термостатической пружиной). Он запускается ремнем от коленчатого вала.
 
    
5. Помпа — центробежный насос. Именно от помпы зависит, будет ли в системе обеспечена бесперебойная циркуляция жидкости (запускаются, чаще всего ремнем – от коленчатого или распределительного вала, шестернями или дополнительной помпой , работающей от электронного блока управления.

6. Расширительный бачок с подпружиненными клапанами. Присутствует у систем с радиатором без заливной горловины.

7.Температурный датчик. Присутствует у авто с электронным блоком управления. Сигналы с датчика поступают непосредственно на ЭБУ, а затем на исполнительные устройства (например, вентилятор).   

Устройство воздушной СО

Если же перед нами устройство воздушной системы охлаждения, где теплоносителем выступает непосредственно поток воздуха, то устройство включает следующие элементы:
  • вентилятор, состоящий из диффузора с неподвижными лопастями (направляют воздух) и ротора. Как правило, запускается при помощи ремня и работает от шкива коленвала охладительные ребра цилиндров и головки (или головок), 
  • съемный кожух, 
  • дефлекторы (монтируются непосредственно над вентканалом) и контрольные приборы. 

Принцип работы системы охлаждения двигателя автомобиля на антифризе

Принцип работы системы зависит от того, что является теплоносителем.

Работа системы охлаждения двигателя на антифризе:

  • Антифриз циркулирует (движется по маршруту) принудительно. 
  • Движение жидкости производится через «рубашку охлаждения» двигателя.
  • Охлаждение ДВС и нагрев охлаждающей жидкости осуществляются синхронно. 
  • Антифриз к водяной рубашке движется от первого цилиндра к последнему или от выпускного коллектора к впускному (в зависимости от потоков)
  • Жидкость циркулирует по малому (до нагрева) или большому кругу (после нагрева). Свой путь антифриз начинает  по большому кругу. Путь к маломому кругу до достижения определённой температуры  жидкости недоступен, это происходит благодаря закрывающемуся клапану. Когда температура, напротив, падает, то клапан  срабатывает снова, и рабочим путем антифриза, как и в начале работы, становится  малый круг.
  • В момент запуска ДВС антифриз  – холодный. При включении системы он нагревается, проходит через радиатор, охлаждается встречным потоком воздуха, в том числе, при необходимости  –  потоком воздуха от вентилятора.
Проходя путь через рубашку охлаждения блока цилиндров и головки цилиндров, жидкость в СО сначала увеличивается, а затем после прохождения радиатора охлаждается до начального уровня. 
  • Чаще всего у ДВС горячая охлаждающая жидкость выходит из корпуса термостата (температурно-регулирующего клапана), протекает через радиатор поток жидкости охлаждается потоком воздуха, 
  • Назад жидкость возвращается через выходной патрубок основного бачка и через шланг идёт к входному патрубку циркуляционного насоса. Он и прогоняет поток жидкости через рубашку охлаждения двигателя. На некоторых двигателях (например, Chrysler и General Motor’s) альтернативой термостату выступает водяной насос. 

Воздушное охлаждение

Схема работы СО следующая:

  • Вентилятор создает поток воздуха
  • Наружная область блоков цилиндров и головки омываются мощным потоком воздуха,
  • Излишки тепла направляются в атмосферу.

Важно! Воздушный поток целенаправленно направляется на наиболее нагреваемые детали – цилиндры и головки. Степень интенсивности охлаждения зависит от того, какие стоят вентиляторы, и как организовано направление потока воздуха. Распределить воздух на все детали ДВС помогают тонкие пластины-дефлекторы.

Степень интенсивности охлаждения, а значит, и результат, напрямую зависит от организации направления потока воздуха и расположения вентилятора.

Неисправности в системе охлаждения

Не секрет, что именно на СО приходится около 25 – 30% неисправностей ДВС. И, если регулярно не проводить диагностику, не принимать меры, можно «нарваться» на дорогостоящий ремонт. 

Если же всё делать своевременно, то решением проблемы может стать замена небольшой детали или даже просто регулировка одного из узлов.

Популярные неисправности в системе охлаждения:

  • Проблемы со шлангами. Износ, потеря герметичности, повреждение, расслаивание,  набуханием материала, влекущее за собой изменение диаметра шланга. Если шланг получит повреждение во время работы двигателя, вся охлаждающая жидкость будет утеряна. Для того, чтобы решить проблему со шлангом, чаще всего требуется его замена, но иногда достаточно решить проблему только с хомутовым соединением.
  • Нарушение герметичности радиатора. Чаще всего под воздействием камней, противогололедных реагентов. Практика показала, что чаще радиатор «летит» в системах без кондиционера (если он есть те же на себя часто берет теплообменник).
  • Зависание» термостата. Если «зависание» происходит в закрытом состоянии, ДВС начинает перегреваться, если открытом – будет проблема с нагревом. Иногда для решения проблемы достаточно регулировки, но часто может потребоваться и замена этого устройства.
  • Течь расширительного бачка (нередкое явление для тех схем системы охлаждения двигателя, где бачок работает под давлением).
  • Потеря герметичности пробки радиатора.  При этой неисправности система не сможет обеспечивать повышение температуры кипения жидкости. В зависимости от ситуации проблема может решаться механическим способом, или требуется замена пробки. К пробке ни в коем случае нельзя относится халатно. Именно от неё зависит, удастся ли удержать нужное давление в СО.
  • Воздушная пробка. Приводит к перегреву двигателя либо нарушению прогрева салона (то есть двигатель может хорошо прогреваться, а тепло в салон перестаёт поступать). Для диагностики проверяют уровень антифриза в расширительном бачке, проводят визуальный осмотр. Для решения проблемы ус старых транспортных средств на радиаторе откручивают  отточенных навыков: нужно снять пластиковую защиту, демонтировать хомут, подать в бачок воздух посредством компрессора, провести проверку на отсутствие пузырьков воздуха, накинуть на штуцер патрубок, монтировать специальную пробку и запускают двигатель, у современных авто в большинстве случае решение проблемы требует затянуть хомут, довести антифриз до оптимального уровня.
  • Обрыв ремня вентилятора. Распространённая поломка у мототехники, коммунальной техники, где стоит воздушная СО. Об этой неисправности у большинства транспортных средств сигнализирует контрольная лампа. Проблема решается путём замены ремня.
  • Загрязнение патрубков, влекущее за собой попадание в СО посторонних примесей и её выход из строя. Проблема решается путём промывки, удаления ржавчины, шлака, накипи, остатков масла, силикатного геля.

Как систематизировать знания и получить практические навыки по теме?

Изучить тему «Системы смазки и охлаждения» подробно поможет лицензионный обучающий продукт «Автомобильные основы» на платформе LCMS ELECTUDE.

Видеообзор этого обучающего продукта для вас доступен прямо сейчас:

Огромное преимущество использование платформы состоит в том, что вы не просто последовательно получаете необходимый набор знаний, а имеете возможность поработать с устройствами на практике, отточить навыки диагностики и ремонта (платформа располагает встроенным тренажёром).

Платформа адаптивна как для проведения занятий в аудитории, так и дистанционного обучения. Очень удобно, что система располагает продуманной системой тестов. Можно не просто изучить материал, а проконтролировать, как он усвоен, какой реальный прогресс при изучении системы охлаждения двигателя.

Как это работает: система охлаждения ДВС

    Сегодня из нашей постоянной рубрики «Как это работает» Вы узнаете устройство и принцип работы системы охлаждения двигателя, для чего нужен термостат и радиатор, а так же почему не получила широкого распространения воздушная система охлаждения.

 

 

 

 

 

 

    Система охлаждения двигателя внутреннего сгорания осуществляет отвод теплоты  от деталей двигателя и передачу её в окружающую среду. Кроме основной функции система выполняет ряд второстепенных: охлаждение масла в системе смазки; нагрев воздуха в системе отопления и кондиционирования; охлаждение отработавших газов и др.


    При сгорании рабочей смеси, температура в цилиндре может достигать 2500°С, в то время как рабочая температура ДВС составляет 80-90°С. Именно для поддержания оптимального температурного режима существует система охлаждения, которая может быть следующих типов, в зависимости от теплоносителя: жидкостная, воздушная и комбинированная. Следует отметить, что жидкостная система в чистом виде уже практически не используется, так как не способна длительное время поддерживать работу современных двигателей в оптимальном тепловом режиме.

 

 

    Комбинированная система охлаждения двигателя:


    В комбинированной системе охлаждения в качестве охлаждающей жидкости часто используется вода, так как имеет высокую удельную теплоемкость, доступность и безвредность для организма. Однако вода имеет ряд существенных недостатков: образование накипи и замерзание при отрицательных температурах. В зимнее время года в систему охлаждения необходимо заливать низкозамерзающие жидкости – антифризы (водные растворы этиленгликоля, смеси воды со спиртом или с глицерином, с добавками углеводородов и др.).

 

 

 

 

    Рассматриваемая система охлаждения состоит из: жидкостного насоса, радиатора, термостата, расширительного бачка, рубашки охлаждения цилиндров и головок, вентилятора, датчика температуры и подводящих шлангов.

    Стоит оговорить, что охлаждение двигателя принудительное, а значит в нём поддерживается избыточное давление (до 100 кПа), вследствие чего температура кипения охлаждающей жидкости повышается до 120°С.

 

 

    При запуске холодного двигателя происходит его постепенный нагрев. Первое время охлаждающая жидкость, под действием жидкостного насоса, циркулирует по малому кругу, то есть в полостях между стенками цилиндров и стенками двигателя (рубашка охлаждения), не попадая в радиатор.   Это ограничение необходимо для быстрого введения двигателя в эффективный тепловой режим. Когда температура двигателя превышает оптимальные значения, охлаждающая жидкость начинает циркулировать через радиатор, где активно охлаждается (называют большим кругом циркуляции).

 

малый круг циркуляции

большой круг циркуляции 

 

 

 

    Далее рассмотрим отдельно каждый элемент системы охлаждения двигателя.

 

 

    ТЕРМОСТАТ.  По своей сути, это маленькое устройство работает как автоматический клапан. Термостат в закрытом состоянии не позволяет охлаждающей жидкости проникнуть в радиатор. Но при температуре среды 85-95°С он открывается и тогда циркуляция жидкости проходит по большому кругу (через радиатор). Причем чем выше температура среды, тем шире термостат открывается, что увеличивает его пропускную способность.

    Устройство и принцип работы:

 

    Термостат сделан из латуни и меди. Состоит из цилиндра наполненного смесью воска и пыли графита (различные производители применяют свои собственные разработки и компоненты). В цилиндр с смесью вдавлен штырь и соединен с клапаном. Нагреваясь, искусственный воск значительно расширяется, выталкивая штырь, который открывает проход охлаждающей жидкости к радиатору. Стальная пружина, по мере остывания рабочего тела, возвращает клапан в закрытое состояние.
   

    ЖИДКОСТНОЙ НАСОС. Насос обеспечивает принудительную циркуляцию жидкости в системе охлаждения двигателя. Чаще всего применяют лопастные насосы центробежного типа.

 

     Вал 6 насоса установлен в крышке 4 с использованием подшипника 5. На конце вала напрессована литая чугунная крыльчатка 1. При вращении вала насоса охлаждающая жидкость через патрубок 7 поступает к центру крыльчатки, захватывается ее лопастями, отбрасывается к корпусу 2 насоса под действием центробежной силы и через окно 3 в корпусе направляется в рубашку охлаждения блока цилиндров двигателя.

     

    РАДИАТОР обеспечивает отвод теплоты охлаждающей жидкости в окружающую среду. Радиатор состоит из верхнего и нижнего бачков и сердцевины. Его крепят на автомобиле на резиновых подушках с пружинами.

    Наиболее распространены трубчатые и пластинчатые радиаторы. У первых сердцевина образована несколькими рядами латунных трубок, пропущенных через горизонтальные пластины, увеличивающие поверхность охлаждения и придающие радиатору жесткость. У вторых сердцевина состоит из одного ряда плоских латунных трубок, каждая из которых изготовлена из спаянных между собой по краям гофрированных пластин. Верхний бачок имеет заливную горловину и пароотводную трубку. Горловина радиатора герметически закрывается пробкой, имеющей два клапана: паровой для снижения давления при закипании жидкости, который открывается при избыточном давлении свыше 40 кПа (0,4 кгс/см2), и воздушный, пропускающий воздух в систему при снижении давления вследствие охлаждения жидкости и этим предохраняющий трубки радиатора от сплющивания атмосферным давлением. Используются и алюминиевые радиаторы: они дешевле и легче, но теплообменные свойства и надёжность ниже.

 


    Охлаждающая жидкость «бегая» по трубкам радиатора, охлаждается при движении встречным потоком воздуха.

 

 

    ВЕНТИЛЯТОР усиливает поток воздуха через сердцевину радиатора. Ступицу вентилятора крепят на валу жидкостного насоса. Они вместе приводятся во вращение от шкива коленчатого вала ремнями. Вентилятор заключен в установленный на рамке радиатора кожух, что способствует увеличению скорости потока воздуха, проходящего через радиатор. Чаще всего применяют четырех- и шестилопастные вентиляторы.

 

   
   

    РАСШИРИТЕЛЬНЫЙ БАЧОК служит для компенсации изменений объема охлаждающей жидкости при колебаниях ее температуры и для контроля количества жидкости в системе охлаждения. Он также содержит некоторый запас охлаждающей жидкости на ее естественную убыль и возможные потери.

 

    ДАТЧИК температуры охлаждающей жидкости относится к элементам управления и предназначен для установления значения контролируемого параметра и дельнейшего его преобразования в электрический импульс. Электронный блок управления получает данный импульс и посылает определенные сигналы исполнительным устройствам. При помощи датчика охлаждающей жидкости компьютер определяет количество топлива, требуемое для нормальной работы ДВС. Также, основываясь на показаниях датчика температуры охлаждающей жидкости блок управления, формирует команду включения вентилятора.
 

 

 

    Воздушная система охлаждения:

 

    В воздушной системе охлаждения отвод теплоты от стенок камер сгорания и цилиндров двигателя осуществляется принудительно потоком воздуха, создаваемым мощным вентилятором. Эта система охлаждения является самой простой, так как не требует сложных деталей и систем управления. Интенсивность воздушного охлаждения двигателей существенно зависит от организации направления потока воздуха и расположения вентилятора.


    В рядных двигателях вентиляторы располагают спереди, сбоку или объединяют с маховиком, а в V- образных — обычно в развале между цилиндрами. В зависимости от расположения вентилятора цилиндры охлаждаются воздухом, который нагнетается или просасывается через систему охлаждения.


    Оптимальным температурным режимом двигателя с воздушным охлаждением считается такой, при котором температура масла в смазочной системе двигателя составляет 70… 110°С на всех режимах работы двигателя. Это возможно при условии, что с охлаждающим воздухом рассеивается в окружающую среду до 35 % теплоты, которая выделяется при сгорании топлива в цилиндрах двигателя.


    Воздушная система охлаждения уменьшает время прогрева двигателя, обеспечивает стабильный отвод теплоты от стенок камер сгорания и цилиндров двигателя, более надежна и удобна в эксплуатации, проста в обслуживании, более технологична при заднем расположении двигателя, переохлаждение двигателя маловероятно. Однако воздушная система охлаждения увеличивает габаритные размеры двигателя, создает повышенный шум при работе двигателя, сложнее в производстве и требует применения более качественных горюче-смазочных материалов. Теплоёмкость воздуха мала, что не позволяет равномерно отводить от двигателя большое количество тепла и, соответственно, создавать компактные мощные силовые установки.

 

 

Система охлаждения двигателя автомобиля

Внимание
Система охлаждения двигателя выполняет одну из самых важных функций в ДВС, поэтому выход из строя всей системы или какого-либо элемента может привести к перегреву и выходу из строя двигателя. Движение и эксплуатация транспортного средства с неисправной системой охлаждения нежелательна или запрещена.

Назначение и действие системы охлаждения


Рисунок 4.31 Принципиальная схема системы охлаждения двигателя.

Система охлаждения служит для принудительного отвода тепла от цилиндров двигателя и передачи его окружающему воздуху. Необходимость в системе охлаждения вызвана тем, что детали двигателя, соприкасающиеся с раскаленными газами, при работе сильно нагреваются. Если не охлаждать внутренние детали двигателя, то вследствие перегрева может произойти выгорание слоя смазки между деталями и заедание движущихся деталей вследствие чрезмерного их расширения.

Системы охлаждения практически всех современных автомобилей не отличаются друг от друга. Принципиальная, обобщенная схема работы системы охлаждения приведена на рисунке 4.31, где красным цветом отмечена жидкость нагретая от деталей двигателя и синим – охлажденная в радиаторе системы.

В систему водяного охлаждения с принудительной циркуляцией жидкости входят водяные рубашки соответственно головки и блока цилиндров (о рубашках мы писали выше, изучая одноцилиндровый двигатель), радиатор, нижний и верхний соединительные патрубки со шлангами и водяной насос с водораспределительной трубой, вентилятор и термостат.

При работе двигателя, приводимый от него в действие водяной насос (он же —помпа) создает круговую циркуляцию воды через водяную рубашку, патрубки и радиатор. По водораспределительной трубе вода в первую очередь направляется к наиболее нагреваемым местам блока. Проходя по водяной рубашке блока и головки, вода омывает стенки цилиндров и камер сгорания, охлаждая двигатель. Нагретая вода по верхнему патрубку поступает в радиатор, где, разветвляясь по трубкам на тонкие струйки, охлаждается воздухом, который просачивается мимо трубок под действием тяги, создаваемой вращающимися лопастями вентилятора. Охлажденная вода вновь поступает в водяную рубашку двигателя.


Рисунок 4.32 Схема системы охлаждения.

Основные элементы системы охлаждения

 Радиатор


Рисунок 4.33 Радиатор.

Представляет собой набор тонких трубок, на которые нанизаны тонкие пластины для увеличения площади поверхности, предназначенной для отвода тепла. Вся работа радиатора заключается в том, чтобы охлаждать жидкость, которая циркулирует в его трубках.

На рисунке 4.34 приведен пример участка радиатора с различными вариантами исполнения.


Рисунок 4.34 Варианты исполнения радиатора системы охлаждения.

На верхней и нижней частях радиатора могут быть бачки, к которым подсоединены верхний и нижний патрубки системы охлаждения соответственно. Если есть бачки, то в верхнем, обычно расположена горловина для заливания охлаждающей жидкости. Если бачков нет, то горловина располагается прямо на радиаторе.

Для лучшего охлаждения жидкости трубки делают плоскими и располагают рядами в шахматном порядке. Поперек трубок установлены в большом количестве тонкие латунные пластины, называемые охлаждающими ребрами, которые увеличивают поверхность охлаждения сердцевины и способствуют более интенсивной отдаче тепла от воды воздуху, проходящему через сердцевину.

В системе охлаждения закрытого типа горловину радиатора плотно закрывают специальной пробкой с двойным паровоздушным клапаном (смотрите рисунок 4.35). Воздушный клапан пробки нагружен слабой пружиной и пропускает внутрь радиатора атмосферный воздух, устраняя возможность возникновения в бачке радиатора разрежения, появляющегося при конденсации паров воды. Паровой клапан нагружен более сильной пружиной и открывается для выпуска пара только тогда, когда давление в радиаторе превышает атмосферное и доходит до 1,28—1,38 кг/см2.


Рисунок 4.35 Крышка радиатора.

 Водяной насос

Водяной насос (он же помпа) заставляет охлаждающую жидкость циркулировать по системе. Тип насоса – центробежный. Вращается насос при помощи приводного ремня, установленного на шкив коленчатого вала.

Насос представляет собой довольно простую конструкцию: вал, на одном конце которого установлена крыльчатка (показана на рисунке 4.36), а на втором – шкив для приводного ремня. Вал опирается на подшипник, установленный в крышке помпы. Зачастую корпусом для насоса служит полость или прилив в блоке цилиндров. Вода по подводящему патрубку поступает внутрь корпуса и подводится к центру вращающейся крыльчатки. При этом вода увлекается крыльчаткой, приобретает вращательное движение, под действием центробежной силы отбрасывается к стенкам корпуса и через выходной канал под напором поступает в водяную рубашку двигателя.


Рисунок 4.36 Водяной насос. Крыльчатка.

 Вентилятор

В былые времена вентилятор устанавливался на одной оси с валом водяного насоса, жестко крепился к приводному шкиву и гнал воздух для дополнительного охлаждения радиатора постоянно, пока работал двигатель, так как привод был от коленчатого вала. Летом это, может, и хорошо, а вот зимой, когда температуры окружающего воздуха и так достаточно для охлаждения, дополнительное охлаждение не на пользу. Так же при движении на автомобиле летом, когда часто приходится стоять в пробках, а двигателю работать на низких оборотах, охлаждение будет недостаточное ввиду отсутствия нормального потока воздуха от вентилятора.

Примечание
Здесь стоит отметить важность определенного (довольно узкого) диапазона рабочей температуры двигателя вне зависимости от времени года или нагрузки при работе. Как вывод: перегрев плохо, но и переохлаждение далеко не на пользу.

Но прогресс не стоял и не стоит на месте, потому, поняв, что в постоянно «включенном» вентиляторе пользы ни зимой, ни летом нет, решили установить вентилятор с электромотором, который включается по команде датчика температуры. Удобно – автомобиль быстро прогревается, а при достижении определенной температуры, начинает работать электровентилятор. В современных автомобилях у электровентилятора еще и два режима работы: быстрый и медленный. Управляет этим электроника.

Но есть и еще один способ заставить без электроники работать вентилятор в заданных режимах работы – установить вяскостную муфту. Эта муфта приводится во вращения ремнем от шкива коленчатого вала. Вентилятор «сидит» на оси и при отсутствии надобности в нем не вращается. Как только возникает необходимость в охлаждении, муфта срабатывает и вентилятор начинает вращаться, как бы соединяясь через приводной ремень с коленчатым валом.

 Термостат

Термостат — это клапан, установленный в корпус, который открывается при прогреве охлаждающей жидкости до нормальной рабочей температуры. Пример устройства и работы термостата приведен на рисунке 4.37. Система охлаждения двигателя устроена так, что имеет два круга обращения – малый и большой. Когда клапан термостата закрыт, охлаждающая жидкость при помощи водяного насоса циркулирует только в пределах головки и блока цилиндров, таким образом она быстро прогревается (малый круг). По мере прогрева охлаждающей жидкости, в частности, и двигателя в целом, начинает открываться клапан термостата, пуская охлаждающую жидкость циркулировать через радиатор – большой круг.

Примечание
При чрезмерном перегреве охлаждающей жидкости мощность двигателя и его экономичность снижаются. Если же охлаждающая жидкость, а следовательно, и двигатель, не прогреваются, то увеличивается конденсация топлива, вызывающая смывание смазки со стенок цилиндров и разжижение ее в картере, а также возрастают тепловые потери, что ведет к снижению мощности двигателя и увеличению расхода топлива.


Рисунок 4.37 Работа термостата.

Радиатор охлаждения двигателя. Основы и принцип работы

При работе двигателя автомобиля каждый цилиндр постоянно повышает свою температуру за счет детонации подаваемого топлива. Если температуру не понижать, постоянные микровзрывы приведут к доведению мотора до критической температуры, превышение которой разрушит силовой агрегат.

Чтобы предотвратить это, устанавливается система охлаждения двигателя автомобиля. В представленной статье мы рассмотрим все базовые сведения о данном узле.

Система охлаждения: что такое

Многие автолюбители задаются вопросом – система охлаждения: что такое?

Система охлаждения предназначена для охлаждения деталей двигателя, нагреваемых в результате его работы. На современных автомобилях система охлаждения, помимо основной функции, выполняет ряд других функций, в том числе:

  • нагрев воздуха в системе отопления, вентиляции и кондиционирования;
  • охлаждение масла в системе смазки;
  • охлаждение отработавших газов в системе рециркуляции отработавших газов;
  • охлаждение воздуха в системе турбонаддува;
  • охлаждение рабочей жидкости в автоматической коробке передач.

В зависимости от способа охлаждения различают следующие виды систем охлаждения: жидкостная (закрытого типа), воздушная (открытого типа) и комбинированная. В системе жидкостного охлаждения тепло от нагретых частей двигателя отводится потоком жидкости. Воздушная система для охлаждения использует поток воздуха. Комбинированная система объединяет жидкостную и воздушную системы.

Устройство и назначение радиатора системы охлаждения двигателя

Избыточное радиаторное тепло удаляется в окружающее пространство. Этому способствует его особая конструкция. Основными элементами изделия являются:

  • верхний бачок;
  • нижний бачок;
  • сердцевина;
  • элементы крепления.

Наиболее популярными материалами для изготовления радиаторов являются:

  • медь;
  • алюминий;
  • медные сплавы;
  • сплавы на основе алюминия.

Сердцевина изделия изготавливается в разном виде. Встречается трубчатый тип, бывает пластинчатый вариант, а также выпускается в сотовом виде. Чаще всего можно встретить трубчатую конструкцию. Внутри располагаются вертикальные трубки с сечением в виде овала либо круга. Они пропускаются сквозь ряды тонких пластин, установленных горизонтально. Они припаяны к обоим бачкам.

Важно знать! Присутствие пластинок способствует не только повышению жесткости конструкции, но и оказывает значительное позитивное влияние на теплоотдачу.

Предпочтительными являются трубки овального сечения. У них увеличена поверхность охлаждения, а это способствует быстрому теплообмену. Также, если случается нежелательное перемерзание жидкости, то овал лишь деформируется, а круг способен разорваться, разгерметизировав систему.

Реже встречаются пластинчатые варианты исполнения. В них ОЖ перемещается по объему, который сформирован двумя спаянными друг с другом фигурными пластинами. Нижняя торцевая часть и верхняя соединены с резервуарами. Охлаждающий воздух перемещается по внешней части пластин. Чтобы увеличить поверхность охлаждения, пластины изготовлены гофрированными. Таким образом удается скорей проводить остывание, чем у трубчатых аналогов.

Однако с пластинами больше встречаются недостатки. Они проявляются в быстром загрязнении, необходимости наличия большего числа спаянных участков, применении более тщательного ухода.

Сотовые конструкции сердцевин предполагают наличие горизонтальных круглых трубок для воздуха, которые снаружи омываются анитифризом. Для обеспечения комфортной спайки таких систем трубки развальцовываются на концах до шестиугольной формы. Такой формат обеспечивает большую, чем в аналогах охлаждающуюся поверхность.

Верхняя часть бочка, расположенного выше, оснащена припаянной горловиной. Снаружи она закрыта специальной пробкой с паровым клапаном. Также к бачку подходит небольшой патрубок, который нужно соединять с гибким шлангом. Через него подводится охлаждающая жидкость.

В нижнем бачке имеется отводящий патрубок с гибким шлангом. Для качественной фиксации использованы винтовые хомуты. Подобная конструкция позволяет иметь небольшое смещение блока относительно охладителя.

Пробка помогает изолировать систему от внешней среды. В ее конструкции присутствуют такие элементы:

  • металлический корпус;
  • паровой клапан;
  • воздушный клапан;
  • блокирующая пружина.

При возможном кипении системы охлаждения повышается уровень давления внутри всех резервуаров. По достижении определенного критического значения, которое установлено производителем, происходит открытие парового клапана, и избыточное давление стравливается в атмосферу. Это является нормальным событием.

В ином случае срабатывает воздушный клапан. После остановки автомобиля происходит охлаждение жидкости, во время которого пар конденсируется и в системе давление снижается ниже атмосферного. Избежать сдавливания трубок вовнутрь помогает впускной клапан с крышки радиатора. Он после открытия пропускает немного воздуха внутрь, обеспечивая баланс внутреннего и внешнего давления.

Компенсировать необходимый рабочий объем антифриза помогает наличие расширительного бачка. В нем должна сохраняться жидкость в установленном производителем количестве. Важно мониторить уровень жидкости в расширительной емкости.

В определенных моделях радиаторов отсутствует заливной патрубок. Добавлять антифриз до требуемого объема тогда следует через расширительный бак. Осуществляется контроль заполненности лишь на холодном моторе.

Предназначение и разновидности

Отвод тепла — далеко не единственное назначение системы охлаждения двигателя. Она дополнительно отвечает за выполнение ряда иных задач:

  • нагрев воздушной массы для отопления салона транспортного средства;
  • уменьшение времени ожидания, необходимого для доведения мотора до рабочей температуры;
  • уменьшение температуры смазочных материалов, используемых для ДВС;
  • если применяется рециркуляция —уменьшается температура выхлопных газов от двигателя внутреннего сгорания;
  • если присутствует автоматическая КПП — охлаждается смазка, расположенная внутри.

Схема системы охлаждения двигателя напрямую зависит от того, каким является ее способ функционирования и принцип работы. Соответственно, принято классифицировать узел на несколько категорий:

  • жидкостное — тепло отводится за счет постоянной циркуляции техжидкости;
  • воздушное— при применении рассматриваемойсхемы систем охлаждения двигателей тепло будет отводиться циркулируемым воздухом;
  • комбинированное — включает в себя применение 1-го и 2-го варианта одновременно.

Практика показывает, что комбинированный вариант является наиболее эффективным, обеспечивая стабильную работу мотора в целом.

История создания


С изобретение двигателей внутреннего сгорания, начали думать как этот двигатель охлаждать. Первым автомобилем, на котором установили радиатор охлаждения является авто Benz Velo. Бенз Вело начали продавать в 1886 году. Далее, Вильгельм Майбах начал усовершенствовать охлаждающее устройство и придумал конструкцию с сотами. Такой радиатор со сотами установили на машину Mercedes 35HP. Со времен первой модели Мерседеса 35НР с охлаждающим радиатором, конструкция радиаторов сильно не менялась, кроме геометрии и некоторых доработок.

Первые образцы водяных радиаторов охлаждения были без насоса (помпы). Жидкость циркулировала самостоятельно. Конструктивно охлаждающие устройства создавались таким образом, чтобы создавался эффект термосифона (труба с жидкостью в трубе с вакуумом.

За счет эффекта термосифона жидкость охлаждения попадала в радиатор. В термосифоне происходит следующие физические явления: если вода нагревается, значит плотность ее уменьшается. Вода с уменьшенной плотностью поднимается вверх. Нагретая жидкость, которая поднималась вверх, оказывалась в устройстве проходя через верхний патрубок.

А в самом радиаторе температура жидкости уменьшалась, а плотность увеличивалась. Прохладная утяжеленная жидкость опускалась вниз и через патрубок заходила в рубашку охлаждения ДВС.

Основной минус радиатора с термосифоном в том, что такое устройство плохо начало справляться с охлаждением моторов повышенной мощности. Далее, конструкторы изобрели помпу для поддержания циркуляции в двигателях любых мощностей.

Устройство

Рассматривая конструкцию, по которой создана система охлаждения двигателя внутреннего сгорания, можно заметить, что здесь практически отсутствует бак, в котором происходит хранение жидкости. В данном случае такой элемент конструкции не нужен, потому что жидкость постоянно находится в каналах/полостях ДВС и радиаторе.

Хотя бачок все же присутствует — его называют расширительным. Главная задача этой детали — комфортный залив рабочей жидкости в систему, а также возможность залива дополнительного количества жидкости, если ее герметичность по тем или иным причинам нарушена.

На картинке ниже можно посмотреть на устройство системы охлаждения двигателя.

Начнем ознакомление с водяного насоса, именуемого в народе «помпой». Это своеобразная мельница, в которой жидкость циркулирует по каналам ДВС под давлением. Конечной целью данной конструкции является проход воды через полости, расположенные в блоке мотора. Последние, исходя из компоновки двигателя автомобиля, могут быть разными.

Именно в цилиндрах присутствует максимально высокая температура, которая передается на другие детали. При отводе тепловой энергии охлаждается блок цилиндров, но сам антифриз нагревается. Соответственно, работа системы охлаждения двигателя обеспечивает выполнение простых физпроцессов, позволяющих уравнять температуру. Далее рабочая жидкость протекает по другим узлам мотора и проникает в радиатор.

С конструктивной точки зрения, радиатор охлаждения двигателя являет собой решетку, образованную из большого количества небольших вертикальных каналов, на поверхности которых находятся поперечные пластины. Устройство радиатора охлаждения двигателя может быть разным, исходя из того, насколько большой объем двигателя и насколько часто ему приходится набирать обороты.

Естественно, в спортивных моторах радиатор двигателя имеет увеличенные размеры. Возрастает и площадь обдува.Из чего состоит радиатор охлаждения двигателя? Большого количества сот, монтажных креплений, а также бачка, в который заливается антифриз. Он постепенно стекает вниз, в результате чего происходит охлаждение. В конструкции предусматривается наличие емкости снизу, которая снова передает антифриз в водяной насос.

Радиатор системы охлаждения двигателя эффективно справляется со своей задачей благодаря большому количеству каналов. Обеспечение качественного результата его работы также гарантируется за счет постоянного обдува корпуса воздушным потоком. Именно поэтому деталь практически всегда монтируется на «морде» авто.

Но даже этого порой может оказаться недостаточно, особенно тогда, когда транспортное средство находится в неподвижном состоянии. Поэтому с целью охлаждения дизельного двигателя (как и бензинового, в целом) используется специальный вентилятор. Он закреплен между мотором и радиаторным узлом, помогая усилить циркуляцию воздушной массы.

Чтобы гарантировать надежную работу системы, надо убедиться в исправном состоянии радиатора. Многие задаются вопросом — как проверить радиатор охлаждения двигателя? Сделать это достаточно просто — нужно быть уверенным в отсутствии повреждений каналов, а на асфальте должны отсутствовать следы течи из-за разгерметизации.

Проверять радиатор охлаждения двигателя надо перед каждой поездкой. Невыполнение этого требования может привести к детонации мотора, приводящей к невозможности восстановить его работоспособность.

Выше мы разобрались с тем, из чего состоит система охлаждения двигателя большинства транспортных средств. Но есть также и другая функция, которую выполняет система — это прогрев силового агрегата. Несмотря на ее противоречивость названию, при эксплуатации авто в зимнее время низкая температура сильно затрудняет процесс запуска мотора.

Охлаждение двигателя происходит немного хуже из-за мороза и повышенной влажности, топливо распыляется более проблематично, а технические жидкости страдают от повышения вязкости. Чтобы гарантировать нормальный принцип работы системы охлаждения двигателя, придется быстрее ее разогреть. Достичь требуемого эффекта позволяет работающий термостат. Он блокирует попадание антифриза в радиаторные соты.

Минуя данный узел, она перетекает опять в водяной насос, нагревая цилиндры. Термостат самостоятельно совершает подачу антифриза при достижении температуры 70-80 градусов Цельсия (исходя из настроек блока управления и компоновки силового агрегата). Патрубок, открытый в процессе разогрева, сразу же закрывается.

Последним прибором, благодаря которому работает схема охлаждения двигателя, является температурный датчик. Его обычно устанавливают в салоне транспортного средства. Водитель постоянно получает актуальную информацию о температуре мотора в режиме реального времени. При отклонении показателей от нормы владелец авто сможет быстро принять меры по локализации и ремонту поломки.

Практика показывает, что система охлаждения дизельного двигателя наиболее часто выходит из строя в связи с нарушением герметичности. В такой ситуации температура сразу повышается, потому что антифриза в системе становится меньше, и имеющегося объема недостаточно для полноценной работы.

Разнообразие конструкций

В транспортных средствах с ДВС встречаются такие типы охлаждения, как:

  • воздушная;
  • на основе жидкости;
  • комбинированная.

Первый тип считается устаревшим. Он использовался на стареньких «Запорожцах», шум от которых был слышен за многие километры. Блок цилиндров изготавливался ребристым (увеличенная площадь отдачи), а на него направлялся поток воздуха от вентилятора.

Жидкостные системы применяются на всех современных моторах. В качестве циркулирующих жидкостей применяются специальные растворы, например, тосол с пониженной температурой замерзания.

В комбинированных системах разводки дополняется установленным вентилятором. Он запускается автоматически.

Жидкостные системы бывают открытыми, когда в циркуляции обеспечен доступ к внешней окружающей среде за счет применения пароотводной трубки. Закрытая схема не предполагает сообщение с окружающей средой, что позволяет внутри держать давление выше атмосферного. Второй тип за счет увеличения давления повышает температуру закипания. В результате жидкость может доходить до 110—120С.

Существует три наиболее популярных варианта перемещения ОЖ:

  1. Принудительный. Конструкция задействует насос, который насильно прогоняет антифриз по трубам.
  2. Термосифонный. Перемещение ОЖ осуществляется благодаря разнице в плотности тосола, располагающегося внутри радиатора и того, который имеется в каналах рубашки. В процессе работы теплая масса от мотора уходит в верхнюю область, перемещаясь в радиаторный бачок. Там все остывает, ее коэффициент плотности увеличивается, что позволяет ей перемещаться вниз к входящим патрубкам рубашки двигателя.
  3. Смешанный (комбинированный). У более перегретых элементов, например, ГБЦ снижают температуру принудительно с применением насоса, а рубашка мотора работает в термосифонном режиме.

Принцип работы

Принцип работы системы охлаждения двигателя постоянно контролируется штатнымблоком управления силовым агрегатом. В нынешних моделях транспортных средств детали охлаждения проверяются специальным математическим алгоритмом, позволяющим принимать во внимание самые разные параметры работы не только мотора, но и сопутствующих систем.

Отталкиваясь от того, как работает система охлаждения двигателя в нормальном режиме при исправных деталях, система стремится поддерживать их на нормальном уровне. Поэтому электроника включает или выключает на некоторое время те или иные элементы.

Чтобы более подробно узнать, как работает система охлаждения двигателя, рекомендуем посмотреть схему ниже.

Поскольку антифриз принудительно протекает по системе, за него отвечает центробежный насос. Благодаря ему техжидкость прокачивается посредством «рубашки». При выполнении данной работы применение систем охлаждения позволяет добиться охлаждения мотора и нагрева антифриза. Исходя из типа мотора и его схемы, жидкость протекает:

  • продольно;
  • поперечно.

Схема системы охлаждения двигателя предусматривает два циркуляционных круга — «малый» и «большой». Например, при включениизажигания, когда все детали не нагреты, термостат закрыт, жидкость протекает по малому кругу. Она не доходит до радиатора охлаждения двигателя.

Когда температурный режим доведется до требуемого уровня, происходит открывание термостата — антифриз проникает в радиатор, где и будет происходить уменьшение температуры за счет обдува. Это и есть большой цикл, повторяющийся многократно.

В этом и состоит общий принцип работы радиатора охлаждения двигателя вне зависимости от марки и модели транспортного средства.

В авто с турбиной охлаждение двигателя происходит по несколько иной схеме. Здесь присутствует два контура, где первый установлен с цельюснижения температуры анифриза, а второй охлаждает воздух. При этом первый контур также разделяется на 2 части — для обслуживания головки блока и блока цилиндров в целом.

Это сделано потому, что схема работы системы охлаждения двигателя предусматривает разницу температуры головки и блока на 15-20 градусов. Таким образом, степень вероятности детонации значительно уменьшается, да и камеры сгорания эффективнее наполняются горючим. В устройство системы охлаждениядобавлена одна особенность — в моторе с турбиной все рабочие контуры имеют собственный термостат.

Выводы

Система охлаждения двигателя присутствует на каждом транспортном средстве. Основноеназначение системы охлаждения — поддержаниеоптимальной температуры мотора автомобиля.

Базовые детали системы охлаждения двигателя следующие — радиатор, термостат, датчик температуры и вентилятор. Система состоит из нескольких контуров, отвечающих за правильность функционирования всей системы.

Устройство радиатора достаточно сложное, поскольку конструкция состоит из большого количества маленьких каналов, по которым протекает подогретая жидкость. Своевременная проверка позволяет гарантировать нормальную работу силовой установки в целом.

Охлаждение двигателя — устройство и функционирование

Температура горящего топлива (до 2000 ° C) отрицательно сказывается на работе двигателя. Поэтому двигатель охлаждают до рабочей температуры. Первым видом охлаждения водой было термосифонное охлаждение.

Нагретая, более легкая вода поднимается в верхнюю часть радиатора через коллектор и охлаждается воздушным потоком. Затем он опускается вниз и возвращается в двигатель. Вода циркулирует при работающем двигателе.Охлаждение поддерживалось вентилятором, но регулировать было невозможно. Позже водяная помпа ускорила циркуляцию воды.

Слабые стороны:

  • Длительное время прогрева
  • Низкая температура двигателя в холодное время года

При дальнейшей разработке двигателей использовались регуляторы охлаждающей жидкости (т.е. термостат). Циркуляция воды через радиатор регулируется в зависимости от температуры охлаждающей жидкости. В 1922 году это описывалось так: «Назначение этих устройств — быстрый прогрев двигателя и предотвращение остывания двигателя.»

Речь идет о системе охлаждения, управляемой термостатом, со следующими функциями:

  • Короткое время прогрева
  • Поддержание постоянной рабочей температуры

Термостат стал решающим усовершенствованием системы охлаждения двигателя и обеспечил циркуляцию охлаждающей жидкости при коротком замыкании. Пока желаемая рабочая температура двигателя не достигается, вода не проходит через радиатор, а обходит его и попадает в двигатель.Термостат открывает соединение с радиатором только после достижения желаемой рабочей температуры. Эта система управления и по сей день остается основой всех систем. Рабочая температура двигателя важна не только с точки зрения производительности и расхода топлива, но и с точки зрения низкого уровня выбросов загрязняющих веществ.

Для охлаждения двигателя используется тот факт, что вода под давлением кипит не при температуре 100 ° C, а только между 115 ° C и 130 ° C. В охлаждающем контуре давление находится в пределах 1.0 бар и 1,5 бар. Это замкнутая система охлаждения. В системе есть расширительный бак, который заполнен только наполовину. Охлаждающая среда — это не просто вода, а смесь воды и охлаждающей добавки. Сейчас мы имеем дело с охлаждающей жидкостью, обеспечивающей защиту от замерзания, с повышенной температурой кипения и защищающей детали двигателя и систему охлаждения от коррозии.

Проектирование системы охлаждения радиатора — примеры проектных систем

Все генераторные установки Cat могут быть оснащены радиаторами различного размера, установленными на передней части агрегата.В данной статье представлена ​​методология проектирования систем охлаждения двигателя, основанная на взаимодействии трех программ.

Автомобильные системы охлаждения Краткий курс о том, как они работают

Простые и практичные, они подходят для большинства приложений.

Конструкция радиатора системы охлаждения . Он предназначен для высвобождения химической энергии, хранящейся в топливе, превращая ее в механическую работу, которую затем можно использовать для полезной цели.При изготовлении радиаторов традиционно предпочтительными материалами были медь и латунь. Этот процесс позволит команде минимизировать размер радиаторов и оптимизировать охлаждение для повышения производительности.

Снижение лобового сопротивления — основная цель при проектировании самолетов, включая системы охлаждения. Код, разработанный для определения размеров радиатора и оценки, коммерческого кода 3D, используемого для моделирования воздушного контура, и коммерческого кода 1d, используемого для моделирования и моделирования всего охлаждения двигателя.Но в течение последних двух десятилетий алюминий стал новым предпочтительным материалом.

Обеспечивает циркуляцию охлаждающей жидкости в системе охлаждения. Радиатор может быть одинарным или сдвоенным. Система охлаждения будет использоваться на гоночном автомобиле формулы.

Насос охлаждающей жидкости в зависимости от размера двигателя с приводом от ремня или шестерни. Использование двух радиаторов для двухконтурной системы обеспечивает большую охлаждающую способность. Кроме того, в конструктивных изменениях сердечников радиатора ряды расширились с ½ ¾ до 11 ½. Более широкие ряды обеспечивают большую площадь поверхности для рассеивания тепла.

Система охлаждения состоит из проходов внутри блока цилиндров и включает водяной насос для циркуляции охлаждающей жидкости, термостат для контроля температуры охлаждающей жидкости, радиатор для охлаждения охлаждающей жидкости, крышку радиатора для контроля давления в системе и некоторая сантехника, состоящая. Эффективность охлаждения определяется тремя основными параметрами. Вентилятор может быть ременным или прямым.

Выполняя эти испытания, команда fsae может ежегодно выбирать подходящий тип радиатора и площадь лицевой поверхности для конкретных потребностей гоночных автомобилей в охлаждении.Воздух предназначен для отвода тепла от охлаждающей жидкости, которое заставляет охлаждающую жидкость выходить из. 8 системы охлаждения основные сведения о системе охлаждения 10 основные сведения о системе охлаждения в простейшей форме двигатель внутреннего сгорания представляет собой устройство преобразования энергии.

Радиаторы — 140 кВт тепла при температуре на входе 95 ° C. Площадь поверхности радиатора, скорость охлаждающей жидкости через систему и количество воздуха, проходящего через радиатор. Эталон теплопередачи тока.

Температура радиатора ниже, чем заданная.Ранний метод заключался в использовании преимущества обильного воздушного потока самолета для замены сотового сердечника на многих поверхностях с высоким соотношением поверхности к объему радиатором, установленным на поверхности. Соображения по конструкции радиатора Охлаждение радиатора является наиболее распространенным методом охлаждения двигателей генераторных установок.

Automotive Appreciation 10 Анимация системы охлаждения двигателя

Воздушное охлаждение двигателя Система воздушного охлаждения

Система охлаждения двигателя

Легочный контур против системы охлаждения автомобиля Anatomusings

Проектирование более эффективного автомобильного радиатора Помощь по программированию Maple

Современный дизайн системы охлаждения Подробнее о трансмиссии

Автомобильные системы охлаждения 101 Как работают автомобильные детали Охлаждение

Как найти устранение утечек охлаждающей жидкости

Автомобильные системы охлаждения Краткий курс о том, как они работают

Как спроектировать и построить высокопроизводительную систему охлаждения

Автомобильное охлаждение Изображение Фото Бесплатная пробная версия Bigstock

Как работает система охлаждения автомобиля Как поддерживать ее

Как сделать Проектирование и создание высокопроизводительной системы охлаждения

Система охлаждения

Система охлаждения Rotax 1 Скачать научную схему

Проектирование пассивной системы охлаждения с несколькими радиаторами Три

Переливной бак против расширительного бака за клетчатым флагом

Охлаждение О системе охлаждения

Требуются два вторичных радиатора RD Часть 1 Завод

Pdf Дизайн и модификация радиатора в двигателе IC

Скромное предложение для двойного нагревателя Core Mentor Графика

Охлаждение наддувочного воздуха

Система охлаждения радиатора Иконка Векторная иллюстрация Плоский дизайн

Как работает система охлаждения двигателя Как работает автомобиль

Studeon A Corporate Категория Flat Bootstarp Responsive

9000 2 Значок системы охлаждения радиатора Векторная иллюстрация Плоский дизайн

Конструкция системы охлаждения Технические характеристики Примечания

Промывка радиатора

Значок системы охлаждения радиатора автомобиля Элементы ремонта автомобиля

Вентилятор системы охлаждения Радиаторы грузовика

Значок системы охлаждения радиатора Стоковая векторная иллюстрация Плоский

Jeep Wrangler Обзор системы охлаждения Руководство Extremeterrain

Bespoke Engineering Система охлаждения двигателя Banco

Система охлаждения Радиатор Обслуживание Ремонт всего

Технические заметки Arts Радиатор Последние новости

Система охлаждения двигателя 101 Keepin It Cool

Значок системы охлаждения радиатора Векторная Иллюстрация Плоский

Знаете ли вы, как работает система охлаждения автомобиля Мани acs

Проектирование пассивных радиаторов системы охлаждения A Три

Давление охлаждающей жидкости в системе охлаждения двигателя Super Street Magazine

Csf 3570 Радиатор охлаждающей жидкости двигателя

Анализ и проектирование системы охлаждения гоночного автомобиля Fsae Docx

Использование перца для устранения утечки радиатора

Как работают автомобильные системы охлаждения Howstuffworks

Apr 3 0 4 0 Tfsi Coolant Performance System Cps

Journal

Sa Design Sa462 Cartech S High Performance Automotive

Радиаторы High Power Media

Значок системы охлаждения радиатора Векторная иллюстрация Flat

Автомобиль Значок линии радиатора Знак линейного стиля для Mobile Concept

Mazda Cx 5 Руководство по ремонту и обслуживанию Система охлаждения Охлаждение 900 03

Конструкция системы охлаждения Окончательный и развивающийся радиаторы

Техническое обслуживание системы охлаждения генератора

Зачем нужно знать, как проводить промывку радиатора

9 Мифы и ошибки системы охлаждения плюс полезное охлаждение

Замена охлаждающей жидкости Антифриз Coolant Sears Auto Center

Универсальный стержень и пластина Дизайн интеркулера 600x260x70 мм Размер сердечника 2 5 дюйма Впускное отверстие Выпускное отверстие Аксессуары для системы охлаждения двигателя в радиаторах Детали из

Системы охлаждения двигателя Теория системы охлаждения HP1425

Системы охлаждения двигателя Hp1425 Автор Ray T Bohacz Overdrive

Значок радиатора автомобиля

Система охлаждения автомобиля Автомобиль

Значок системы охлаждения радиатора Складе векторные иллюстрации Плоский дизайн

Система охлаждения Grapevine Se Обслуживание системы охлаждения rvice

Объяснение радиатора и системы охлаждения Jeep Quadratec

Комплект для ремонта системы охлаждения Bmw E46 376716261kt

Lr2148 Радиатор 98 02 Honda Accord 4 цилиндра Может использоваться для 2203 Combo Design

Csf 3406 Охлаждающая жидкость двигателя 9000 Бханупратап Ниранджан Иит Канпур

Vector Car Radiator Cooling System Icon Автомобильные акции

Ford Coyote Engine Cooling System Performance Guide Diy Ford

Система охлаждения Ppt Видео онлайн Скачать

Высокопроизводительная и новейшая конструкция ПК Система жидкостного водяного охлаждения с радиатором 360 мм Купить Система водяного охлаждения ПК. Система водяного охлаждения

Последние достижения в области наножидкостей в системе охлаждения двигателя

Amazon Com Fasmodel 480 мм 18 трубок Алюминий Компьютер Вода

Корвет C2 получил полный капитальный ремонт системы охлаждения

Проектная схема двухконтурной системы охлаждения Slet18dm

Как работает система охлаждения автомобиля

Значок системы охлаждения радиатора Векторная иллюстрация Flat

Китайские автозапчасти Новый дизайн Автомобильный радиатор для Ez 11 At Oem

3 Двигатели внутреннего сгорания Охлаждение и смазка

Solved Mech 426 Проектирование и анализ терможидкостных систем

Дизайн системы охлаждения гоночных автомобилей Гоночные автомобили

Высокоэффективная система охлаждения 101 Держите вашу прохладу горячей

Охлаждающая жидкость Обзор Sciencedirect Topics

Электрическая система охлаждения Shayen Info

570 2019 Oem X30 Алюминиевый радиатор Новый более широкий дизайн X30 9 0003

Автомобильные системы охлаждения Краткий курс о том, как они работают

Признаки выхода из строя радиатора

Экономика специальной системы охлаждения

Адаптер тестера системы охлаждения крышки радиатора Gates

Обслуживание системы охлаждения Grapevine Обслуживание системы охлаждения

Системы охлаждения

Китай Автозапчасти Новый дизайн Автомобильный радиатор для Ez 11 At Oem

Радиатор Википедия

Отопление и охлаждение для вашего дома Специальная гидронная система

Значок радиатора автомобиля Охлаждение Радиатор Охлаждение Stock Vector

Dolphin Group специализируется на проектировании и производстве

Высокая производительность и Система жидкостного водяного охлаждения ПК новейшего дизайна с радиатором 240 мм Купить Система жидкостного водяного охлаждения ПК с водяным охлаждением

Дизайн современной системы охлаждения Дело не в температуре

Радиатор автомобиля Система охлаждения Радиатор Вентилятор автомобиля


(PDF) Методология проектирования систем охлаждения двигателя в автономных приложениях

Стр. 17 из 17

ССЫЛКИ

1.Pang, HH, Brace, CJ, Обзор технологий охлаждения двигателей для современных двигателей, Proceedings of the

Institution of Mechanical Engineers Part D — Journal of Automobile Engineering 218 (11) 1209-1215, 2004.

2. Allen, DJ , Ласецки, М.П., ​​Эволюция управления температурным режимом и контролируемый поток охлаждающей жидкости, SAE Paper 2001-

01-1732, 2001.

3. Сакаи Т., Исигуро С., Судох Ю., Рааб Г., Хагер , J., Оптимальная конструкция системы охлаждения двигателя с помощью компьютерного моделирования

, SAE Paper 942270, 1994.

4. Руководство пользователя PowerFlow 3.4, CORP, 2002.

5. FlowMaster 7.2. руководство пользователя, FlowMaster, 2007.

6. Ульман, Д.Г., Процесс механического проектирования, 1-е изд., МакГроу-Хилл, 1992.

7. Кейс, ВМ, Лондон, Алабама, Компактные теплообменники, Кригер, Нью-Йорк. , 1998.

8. Ахаичиа, А., Коуэлл, Т., А. Характеристики теплопередачи и перепада давления плоских трубок и пластин с жалюзи

поверхностей ребер, Experimental Thermal and Fluid Science 1 (2): 147-157, 1988 г.

9. Шах, Р.К., Секулич, Д.П., Основы проектирования теплообменников, Нью-Йорк, Вайли, 2003 г.,

10. Цуй, Дж., Тафти, Д.К., Расчеты потока и теплопередачи в трехмерном многогранном ребре.

Геометрия

, International Journal of Heat and Mass Transfer 45 (25): 5007-5023, 2002.

11. Webb, RL, Trauger, P., Структура потока в геометрии пластинчатого теплообменника, Experimental Thermal

и Наука о жидкости 4 (2): 205-217, 1991.

12. Какач, С., Лю, Х., Теплообменники — выбор, номинальные характеристики и тепловое проектирование, CRC Press, 2002,

13. Олиет, К., Олива, А., Кастро, Дж., Перес- Сегарра, CD, Параметрические исследования автомобильных радиаторов, Applied

Thermal Engineering 27 (11-12): 2033-2043, 2007.

14. Наварро, HA, Кабесас-Гомес, L., Новый подход к расчету тепловых характеристик перекрестно-проточных теплообменников

, International Journal of Heat and Mass Transfer 48 (18): 3880-3888, 2005.

15. Бохак, С.В., Бейкер, Д.М., Ассанис, Д.Н., Глобальная модель для установившегося и переходного режима тепла двигателя SI.

Исследования переноса

, SAE Paper 960073, 1996.

16. Торрегроса, AJ, Olmeda, P. , Degraeuwe, B., Reyes, M., Краткая модель температуры стенки для двигателей DI Diesel

, Applied Thermal Engineering 26 (12): 1320-1327, 2006.

17. Тейлор, К.Ф., Тунг, Т.Ю., Heat Перенос в двигателях внутреннего сгорания, ASME Paper 57-HT-17, 1957.

18.Лахвич, Т.Р., Исследование отвода тепла двигателя, Ford Motor Co, 1986.

19. Пэриш, О.Л., Методология прогнозирования отвода тепла от двигателей с турбонаддувом или естественных двигателей

, докторская диссертация, Техасский технический университет, 2003.

20. Зейтнетдинов Р.А., Дьяков И.Ф., Яригин С.В., Diseño de motores para automóviles y tractores, УГТУ,

Ульяновск, 2004.

21. Вольф-Генрих Х. Аэродинамика дорожных транспортных средств, SAE International. 1998 г.

22. Фрид, А., Абом, М., Ван, Ю., Фезе, К., Охлаждающие вентиляторы в железнодорожном транспорте — Применение мер по снижению шума

меры для охладителя двигателя, установленного на крыше, Proc. Fan Noise 2007, Lyon, 2007.

23. Joas, K.O .; Киршигер К. Вентиляторы в системах охлаждения рельсовых транспортных средств. Энергетические системы как результат общей оптимизации систем

, Voith Turbo, 2002.

24. Стейн, Дж., Хайдман, М.М., Разработка и тестирование модели вентилятора с характеристической кривой, ASHRAE Winter

Meeting, Anaheim, 2004,

25.Karassic, IJ, Messina, JP, Cooper, P., Heald, CC, Pump Handbook, 3 ed., New York: McGraw-Hill,

2001.

26. Zoz, S., Thelen, W., Alcenius , Т., Вайзман, М., Валидация методов быстрого проектирования и прогнозирования производительности

водяных насосов, Бумага SAE 2001-01-1715, 2001.

КОНТАКТНАЯ ИНФОРМАЦИЯ: Пабло Сезар Ольмеда Гонсалес, [email protected]. es

(PDF) Конструкция и модификация радиатора в ИС система охлаждения двигателя для максимальной эффективности и срока службы

Индийский журнал науки и технологий, Том 9 (2), DOI: 10. 17485 / ijst / 2016 / V9i2 / 85810, январь 2016

ISSN (печатный): 0974-6846

ISSN (онлайн): 0974-5645

* Автор для переписки

Аннотация

Предыстория / Цели: Двигатель производит высокий количество тепла во время бега. Это может повысить температуру двигателя до очень высокого уровня

и может повредить или заедать компоненты двигателя. Следовательно, для безопасности компонентов двигателя, он должен работать

при гораздо более низкой температуре, которая называется рабочей температурой двигателя.Методы / статистический анализ: Радиатор играет

             

   

  Находки: после анализа

  

Следовательно, скорость сопла увеличивается, а давление уменьшается. Давление прямо пропорционально температуре. Приложение /

Улучшения:              

 

Ключевые слова: Система охлаждения, ИС Двигатель, характеристики, радиатор

Конструкция и модификация радиатора в I.C.

Система охлаждения двигателя для максимального увеличения эффективности и срока службы

R.Пол Линга Пракаш2, М. Селвам1, А. Алагу Сундара Пандиан1, С. Палани1 * и К. А. Хариш3

1 Кафедра машиностроения, Vel Tech Multitech, Авади, Ченнаи — 62, Тамил Наду, Индия;

[email protected], [email protected],

[email protected], [email protected]

2D Кафедра управленческих исследований, Велтех колледж высоких технологий Д-р Рангараджан 2 , Ченнаи — 62, Тамил Наду, Индия; планирование @ veltechmultitech. org

1. Введение

Из-за спроса на более мощные двигатели в меньших

капотных пространствах возникла проблема недостаточного рассеивания тепла в автомобильных радиаторах

. Более

33% энергии, вырабатываемой двигателем в результате сгорания

, теряется в тепле. Недостаточное рассеяние тепла

может привести к перегреву двигателя, что приводит к выходу

из строя смазочного масла, ослаблению металла

деталей двигателя и значительному износу между деталями двигателя.

Чтобы свести к минимуму нагрузку на двигатель в результате нагрева

поколения, автомобильные радиаторы должны быть изменены на

, чтобы они были более компактными, сохраняя при этом высокие показатели теплоотдачи

.

Для улучшения охлаждающего эффекта в системе охлаждения

необходимо улучшить теплопередачу. Лучшая передача тепла

зависит от площади поверхности радиатора.

В то же время необходимо учитывать ожидания заказчика

, то есть размер радиатора

автомобиля. Таким образом, необходимо спроектировать радиаторные трубки

так, чтобы обеспечить как высокую теплопередачу, так и оптимальный размер радиатора

в соответствии с ожиданиями клиентов.

На функции

радиатора влияют разные факторы. Радиатор с атмосферным воздухом,

потока хладагента, присутствующего в системе, плотность

охлаждающих дюймов, а также температура воздуха на входе в систему

. Отмечено, что при атмосферном воздухе

и массовом расходе хладагента, повышающего охлаждение

, мощность радиатора увеличивается1,2.При отклонении

геометрический размер охлаждающих ns от оптимального

Системы охлаждения генераторов | Информация о генераторе

Конфигурации системы охлаждения
Каждый производитель генераторной установки предлагает разные варианты конструкции системы охлаждения. Два наиболее распространенных типа систем охлаждения — это системы с замкнутым и разомкнутым контуром. Системы с замкнутым контуром включают в себя охлаждающий насос (ы), вентилятор охлаждения и радиатор (ы), расположенные на салазках как единое целое.Кроме того, предлагаются варианты контейнеров и прицепов.

Охлаждающая жидкость на основе этиленгликоля циркулирует через компоненты системы охлаждения. Три распространенных конфигурации системы охлаждения:

Одинарный насос с одним контуром (SPSL) — Системы SPSL распространены в генераторах малых и средних размеров. Эта система работает следующим образом:

• Двигатель запускается, насос с прямым приводом работает, и муфта вентилятора вращается.
• Двигатель достигает рабочей температуры, термостат охлаждающей жидкости размыкается и включается муфта вентилятора.
• Охлаждающая жидкость на основе этиленгликоля подается во внутренние компоненты блока цилиндров и головки цилиндров, такие как масляный радиатор и промежуточный охладитель.
• Воздух вытягивается через радиатор.
• Обратный поток охлаждающей жидкости направлен в радиатор.


Рисунок 1, Конфигурация системы охлаждения SPSL

Двойной насос с двойным контуром (DPLP) — Конфигурации системы охлаждения DPLP являются общими для больших генераторов и когда генератор расположен в атмосфере с высокой температурой окружающей среды.Эта система работает следующим образом:

• Двигатель запускается, насос с прямым приводом приводится в действие, а муфта вентилятора вращается.
• Двигатель достигает рабочей температуры, термостат охлаждающей жидкости размыкается и включается муфта вентилятора.
• Один насос подает охлаждающую жидкость на основе этиленгликоля к блоку цилиндров и головке цилиндров.
• Оставшийся насос направляет охлаждающую жидкость на основе этиленгликоля к внутренним компонентам, таким как маслоохладитель и промежуточный охладитель.
• Воздух вытягивается через радиатор.
• Обратный поток охлаждающей жидкости направляется к отдельным радиаторам.


Рисунок 2, Конфигурация системы охлаждения DPDL

Открытый контур (SPSL) — Системы с открытым контуром обычно используются в морских приложениях, хотя могут использоваться там, где доступен любой приемлемый водоем. Эта система работает следующим образом:

• Двигатель запускается, приводится в действие насос с прямым приводом, подающий морскую воду на термостат.
• Двигатель достигает рабочей температуры, термостат забортной воды открывается и пропускает забортную воду через блок двигателя, головку цилиндров и такие компоненты, как масляный радиатор и промежуточный охладитель.
• Возвратная морская вода направляется обратно к источнику.

Рисунок 3, Конфигурация системы охлаждения с разомкнутым контуром (SPSL)

Обслуживание системы охлаждения
Чтобы гарантировать работоспособность генератора, требуется базовое понимание компонентов системы охлаждения. Отдельные производители генераторов публикуют процедуры проверки и технического обслуживания систем охлаждения. Ниже приведены общие отраслевые стандарты (всегда обращайтесь к спецификациям производителя):

ПРЕДУПРЕЖДЕНИЕ
Чтобы предотвратить возможность получения травм или смерти, всегда помечайте и блокируйте все источники энергии двигателя / генератора перед обслуживанием системы охлаждения.

Не снимайте герметичную крышку с горячего двигателя. Подождите, пока остынет и температура не опустится ниже 50 ° C (120 ° F), прежде чем снимать герметичную крышку.Горячие брызги охлаждающей жидкости или пар могут стать причиной травм.

Охлаждающая жидкость токсична. Беречь от детей и домашних животных. Если не используется повторно, утилизируйте в соответствии с местными экологическими нормами.

Не выпрямляйте изогнутую лопасть вентилятора и не продолжайте использовать поврежденный вентилятор. Изогнутая или поврежденная лопасть вентилятора может выйти из строя во время работы и стать причиной травм или материального ущерба.

Осторожно
Система охлаждения должна быть заполнена должным образом, чтобы предотвратить образование воздушных пробок.Если в системе охлаждения присутствует воздух, в насосе возникнет кавитация, что приведет к преждевременному износу насоса и повреждению двигателя. При обслуживании систем охлаждения всегда обращайтесь к руководствам производителя.

Охлаждающая жидкость — Охлаждающая жидкость двигателя представляет собой смесь чистой воды хорошего качества и смеси антифриза на основе этиленгликоля. Никогда не используйте воду только в качестве охлаждающей жидкости. Охлаждающая жидкость смазывает подшипники насоса охлаждающей жидкости и помогает защитить от образования ржавчины в каналах охлаждающей жидкости двигателя. Всегда обращайтесь к рекомендациям производителя для правильной смеси охлаждающей жидкости.Ниже приведена таблица, помогающая смешивать охлаждающую жидкость в соответствии со спецификациями производителя.

Система охлаждения — Каждый генератор может иметь разную конфигурацию системы охлаждения. Ниже приводится общий список компонентов:

• Насос охлаждающей жидкости — в зависимости от размера двигателя, с ременным или зубчатым приводом. Обеспечивает циркуляцию охлаждающей жидкости в системе охлаждения.

• Радиатор — может быть с одним или двумя радиаторами. Использование двух радиаторов для двухконтурной системы обеспечивает большую охлаждающую способность.

• Вентилятор — может быть с ременным или прямым приводом. В приложениях с ременным приводом можно использовать муфту вентилятора для включения вентилятора при необходимости.

• Масляный радиатор двигателя — охлаждающая жидкость подается на судно. Судно имеет пучок трубок, погруженных в охлаждающую жидкость. Масло проходит через пучок труб и охлаждается окружающей охлаждающей жидкостью.

• Интеркулер — охлаждающая жидкость подается по трубно-ребристому пучку. Пучок труб и ребер находится в сосуде. Воздух проходит через сосуд и охлаждается трубно-ребристым пучком.

• Жалюзи — используются в навесах и мобильных установках, чтобы воздух мог поступать в радиатор из атмосферы. Системы управления могут допускать полное открытие или полное закрытие. Усовершенствованные системы управления позволяют жалюзи открываться на столько, сколько требуется для работы премиум-класса.

Проверка системы охлаждения — Общие проверки системы охлаждения должны выполняться во время простоя генератора и во время его работы. Всегда следует соблюдать рекомендации производителя.Ниже приведены некоторые минимальные проверки, которые можно использовать при отсутствии рекомендаций.

во время выключения:
• Утечка в сливном отверстии водяного насоса (ов).
• Повреждения, утечки и мусор на ребрах радиатора (ов).
• Уровень охлаждающей жидкости и загрязнение масла. Масло в охлаждающей жидкости может указывать на негерметичный узел масляного радиатора.
• Удельный вес охлаждающей жидкости.
• Повреждение вентилятора, кожуха вентилятора или ремня.
• Утечка охлаждающей жидкости через шланговые соединения.
• Масло для доказательства загрязнения охлаждающей жидкости. Молочный цвет может указывать на негерметичность прокладки ГБЦ.
• Жалюзи должны быть закрыты в периоды, когда генератор не работает.
• Автоматический переключатель передачи в правильное положение.

Во время работы:
• Температура охлаждающей жидкости двигателя.
• Прежде чем охлаждающая жидкость достигнет рабочей температуры, убедитесь, что вентилятор не вращается в муфтах вентилятора.
• Когда охлаждающая жидкость достигнет рабочей температуры, убедитесь, что вентилятор работает с муфтой вентилятора.
• Утечка охлаждающей жидкости в радиаторе.
• Утечка охлаждающей жидкости через шланговые соединения.
• Пары охлаждающей жидкости в выхлопе двигателя. Указывает на утечку охлаждающей жидкости в камере сгорания.

Система охлаждения

Система охлаждения

Целью системы охлаждения двигателя является отвод избыточного тепла от двигателя, поддержание работы двигателя при наиболее эффективной температуре и доведение двигателя до оптимальной температуры. температуры как можно скорее после запуска.В идеале система охлаждения поддерживает работу двигателя при наиболее эффективной температуре независимо от условий эксплуатации.

Когда топливо сгорает в двигателе, около одной трети энергии топлива преобразуется в мощность. Еще треть выходит из выхлопной трубы неиспользованной, а оставшаяся треть становится тепловой энергией.

В любом двигателе внутреннего сгорания необходима какая-либо система охлаждения. Если бы не было системы охлаждения, детали расплавились бы от тепла горящего топлива, и поршни расширились бы настолько, что не смогли бы двигаться в цилиндрах (так называемый «заедание»).

Система охлаждения двигателя с водяным охлаждением состоит из: водяной рубашки двигателя, термостата, водяного насоса, радиатора и крышки радиатора, вентилятора охлаждения (электрического или с ременным приводом), шлангов, сердечника нагревателя и обычно расширительный (переливной) бак.

Двигатели, работающие на топливе, выделяют огромное количество тепла; температура может достигать 4000 градусов по Фаренгейту при горении топливовоздушной смеси. Однако нормальная рабочая температура составляет около 2000 градусов по Фаренгейту. Система охлаждения отводит около одной трети тепла, производимого в камере сгорания.

Выхлопная система отводит большую часть тепла, но части двигателя, такие как стенки цилиндров, поршни и головка цилиндров, поглощают большое количество тепла. Если часть двигателя становится слишком горячей, масляная пленка перестает ее защищать. Отсутствие смазки может разрушить двигатель.

С другой стороны, если двигатель работает при слишком низкой температуре, он неэффективен, масло загрязняется (увеличивает износ и снижает мощность), образуются отложения и расход топлива низок, не говоря уже о выбросах выхлопных газов! По этим причинам система охлаждения не работает до тех пор, пока двигатель не прогреется.

Есть два типа систем охлаждения; жидкостное охлаждение и воздушное охлаждение. Большинство автомобильных двигателей имеют жидкостное охлаждение; воздушное охлаждение чаще используется в самолетах, мотоциклах и газонокосилках.

Двигатели с жидкостным охлаждением имеют каналы для жидкости или охлаждающей жидкости через блок цилиндров и головку. Охлаждающая жидкость должна иметь косвенный контакт с такими частями двигателя, как камера сгорания, стенки цилиндра, седла и направляющие клапана. Прохождение каналов в двигателе нагревает охлаждающую жидкость (она поглощает тепло от деталей двигателя), а прохождение через радиатор охлаждает ее.После того, как радиатор снова «остынет», охлаждающая жидкость возвращается через двигатель. Этот бизнес продолжается, пока двигатель работает, при этом охлаждающая жидкость поглощает и отводит тепло двигателя, а радиатор охлаждает охлаждающую жидкость.

Тестер давления в системе охлаждения используется для проверки давления в системе охлаждения, что позволяет механику определить, есть ли в системе какие-либо медленные утечки. Затем утечку можно найти и устранить до того, как она вызовет серьезную проблему.

Сердечник обогревателя

Сердечник обогревателя — это уменьшенная версия радиатора, которая используется для согрева пальцев ног, когда на улице холодно.

Сердечник отопителя установлен под панелью приборов. Часть горячей охлаждающей жидкости проходит через этот маленький радиатор по дополнительным шлангам. Там же установлен небольшой электрический вентилятор, специально предназначенный для отвода тепла внутрь автомобиля. Чтобы включить этот вентилятор, вы используете переключатель под названием «вентилятор» или «нагнетатель», расположенный на панели управления. Принцип точно такой же, как и в радиаторе вашего двигателя, за исключением того, что тепло выделяется внутри автомобиля, а не снаружи. Большинство двигателей используют сердечник нагревателя для нагрева воздуха, выходящего из кондиционера, если приборная панель не установлена ​​на «холодный».Более эффективные конструкции этого не делают, потому что это заставляет двигатель работать тяжелее, чем он должен. Они включают и выключают компрессор, чтобы уменьшить мощность охлаждения
.

Если ваш автомобиль сильно нагревается, включение обогревателя поможет уменьшить нагрев двигателя. К сожалению, зимой большинство автомобилей не перегревается.

Вопрос недели: почему в системе охлаждения двигателя есть термостат, и влияет ли он на расход охлаждающей жидкости?

Вопрос месяца, представленный Биллом Маклелланом, Пасадена, Калифорния, на который ответила Мелани Хант, доцент кафедры машиностроения Калифорнийского технологического института.

Система охлаждения — важная часть автомобильного двигателя. Я определенно стал лучше осознавать этот факт после того, как моя машина перегрелась на шоссе Санта-Моника.

Система охлаждения выполняет три важные функции. Во-первых, отводит излишки тепла от двигателя; во-вторых, он поддерживает рабочую температуру двигателя там, где он работает наиболее эффективно; и, наконец, он максимально быстро доводит двигатель до нужной рабочей температуры.

Система охлаждения состоит из шести основных частей: двигателя, радиатора, водяного насоса, охлаждающего вентилятора, шлангов и термостата.В процессе сгорания часть энергии топлива превращается в тепло. Это тепло передается охлаждающей жидкости, которая циркулирует в двигателе с помощью водяного насоса. Шланги несут горячую охлаждающую жидкость к радиатору, где тепло передается воздуху, который протягивается мимо двигателя охлаждающим вентилятором. Затем охлаждающая жидкость возвращается к водяному насосу и рециркулирует.

Когда двигатель холодный, например, первым делом утром, двигатель работает немного иначе. Для максимальной эффективности двигатель разработан с возможностью быстрого прогрева.Как только двигатель достигает нужной рабочей температуры, он рассчитан на поддержание стабильной температуры, что и является целью термостата. Термостат похож на клапан, который открывается и закрывается в зависимости от температуры. Термостат изолирует двигатель от радиатора до тех пор, пока он не достигнет определенной минимальной температуры. Без термостата двигатель всегда будет отдавать тепло радиатору, и ему потребуется больше времени для прогрева. Когда двигатель достигает желаемой рабочей температуры, термостат регулирует поток в радиатор для поддержания стабильной температуры.

Иногда охлаждающая жидкость настолько горячая, что термостат полностью открывается, что делает двигатель полностью зависимым от радиатора для поддержания стабильной температуры. Пока через радиатор проходит достаточно воздуха, двигатель остается холодным. Если по какой-либо причине расход воздуха будет слишком низким, радиатор не справится со своей работой и двигатель может перегреться. В этот момент, если скорость потока охлаждающей жидкости увеличивается, двигатель будет передавать больше тепла охлаждающей жидкости, что усугубит ситуацию.Ограничение потока термостата способствует увеличению давления в системе охлаждения, что затрудняет закипание охлаждающей жидкости в водяном насосе. Однако это мало помогает радиатору охладить двигатель.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *